homehome Home chatchat Notifications


Scientists collect interstellar dust that formed the Earth and solar system

The findings might revolutionize our understanding of how the solar system came to be, as well as all planetary bodies for that matter.

Tibi Puiu
June 12, 2018 @ 1:29 pm

share Share

Researchers have discovered an enormous body of interstellar dust that predates the formation of our solar system 4.6 billion years ago. The findings might revolutionize our understanding of how the solar system came to be, as well as all other planetary bodies.

Artist impression of an early solar system. Credit: NASA.

Artist impression of an early solar system. Credit: NASA.

It sounds unbelievable, but some of the original interstellar dust that went to form the sun, Earth, and all the other planets in the solar system can be still be found floating around in our neighborhood, even hitting our atmosphere from time to time. Presolar dust particles can no longer be found in the inner solar system, as it was long ago destroyed, reformed, and reaggregated in multiple phases. However, presolar dust can still be found in the outer solar system, specifically in some comets.

When these comets pass close enough to the sun, they release presolar dust that can reach Earth’s orbit and settle through the atmosphere, where it can be collected and later studied. Dr. Hope Ishii of the University of Hawai’i at Manoa and her colleagues used electron microscopy to study such dust particles, as well as data gathered from the Cosmic Dust Analyzer (CDA) aboard the Cassini Saturn orbiter during its two-decade mission.

The presolar dust particles in question are actually called GEMS – or ‘glass embedded with metal and sulfide’. They’re less than one hundredth the width of a human hair in diameter and contain a variety of carbon known to decompose when exposed to even relatively gentle heating.

An electron micrograph of an interplanetary dust particle of likely cometary origin. Credit: Hope Ishii

Ishii and colleagues write that the GEMS likely formed in the interstellar medium due to grain shattering, amorphization, and erosion from supernovae shocks, then later went through subsequent periods of aggregation. Irradiation likely provided enough energy for the amorphous silicates which comprise the dust to absorb small amounts of metal atoms, the authors reported in the journal Proceedings of the National Academy of Sciences. 

“With repeated cycling in and out of cold molecular clouds, mantled dust and any aggregates were repeatedly and progressively partially destroyed and reformed. Cassini mission data suggest the presence of iron metal in contemporary interstellar dust,” the researchers wrote in their study.

This first generation of GEMS aggregated with crystalline grains that were likely transported from the hot inner-solar nebula, creating second-generation aggregates. Later this 2nd generation of aggregates was likely incorporated into small, icy cometary bodies.

The researchers concluded that the grains they studied represent surviving pre-solar interstellar dust that formed the very building blocks of planets and stars. As such, they provide unique insight into a pre-solar system environment, ultimately telling us how our planet and others like it came to be. We only have a rough picture of how our solar system formed from a huge disk of dust and gas, and these little grains could be the missing pieces that complete the puzzle. In the future, the researchers plan on collecting more comet dust, particularly that sourced from more well-protected comets that pass by the sun.

share Share

A Dutch 17-Year-Old Forgot His Native Language After Knee Surgery and Spoke Only English Even Though He Had Never Used It Outside School

He experienced foreign language syndrome for about 24 hours, and remembered every single detail of the incident even after recovery.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.

Westerners cheat AI agents while Japanese treat them with respect

Japan’s robots are redefining work, care, and education — with lessons for the world.

Scientists Turn to Smelly Frogs to Fight Superbugs: How Their Slime Might Be the Key to Our Next Antibiotics

Researchers engineer synthetic antibiotics from frog slime that kill deadly bacteria without harming humans.

This Popular Zero-Calorie Sugar Substitute May Be Making You Hungrier, Not Slimmer

Zero-calorie sweeteners might confuse the brain, especially in people with obesity

Any Kind of Exercise, At Any Age, Boosts Your Brain

Even light physical activity can sharpen memory and boost mood across all ages.

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

We Should Start Worrying About Space Piracy. Here's Why This Could be A Big Deal

“We are arguing that it’s already started," say experts.