homehome Home chatchat Notifications


How sperm cells defy Newton's third law of motion

The world of biology holds surprises, like cells that challenge the very fabric of Newtonian principles.)

Tibi Puiu
October 24, 2023 @ 10:25 pm

share Share

sperm
Credit: Public domain CC0 photo.

Picture a puny sperm cell, with its whip-like tail, wriggling its way through thick fluids to reach the prized egg. Out of millions of sperm, only one gets to chance to fertilize the egg. However, it’s astonishing any make it past the finish line given Newton’s third law of motion.

This is the law that famously states “for every action, there is an equal and opposite reaction.” It’s a principle you might recall from the days when two marbles collided and rebounded in your childhood games. Yet, when it comes to the microscopic world, things aren’t so straightforward.

Swimming against the current

Kenta Ishimoto, from Kyoto University, and his team delved deep into this puzzling behavior. They closely observed human sperm and the motion of green algae, Chlamydomonas, both of which swim using slender, flexible flagella (the tail).

Here’s the conundrum: the thick liquid environment around these cells should sap away all their energy, keeping them still. Imagine trying to swim in a pool of honey; that’s what these cells face in highly viscous fluids.

The way the sperm and green algae manage to ‘beat’ Newton’s third law of motion is owed to the ‘odd elasticity’ with which these flagella move. Their flagella interact with their surroundings in a non-reciprocal manner, bending in just the right way in response to the fluid. This means they don’t always receive an equal and opposite response.

This property allows the cells to glide effortlessly even through the thickest fluid without losing much energy. And since many microorganisms have flagella, there likely are many other tiny rule-breakers waiting to be discovered.

Beyond the thrill of learning more about nature, understanding these motions can improve the design of tiny robots or harness these principles to understand collective behavior in larger systems.

The findings appeared in the journal PRX Life.

share Share

These Cockatoos Prepare Their Food by Dunking it Into Water

Just like some of us enjoy rusk dipped in coffee or tea, intelligent cockatoos delight in eating rusk dipped in water.

Two tiger cubs were released in Siberia. They reunited as mates after a trek of 120 miles

Reuniting as mates, they’ve not only adapted to the wild but sparked new hope for the survival of Amur tigers.

Haunting video from NASA and ESA shows Greenland losing 563 cubic miles of ice in under 30 seconds

We all know (hopefully) that warming temperatures is driving ice loss. But seeing it makes it all the more disturbing. Don’t get me wrong, the visualization produced by NASA and ESA is beautiful, but what it’s showing is simply heartbreaking. Between 2010 and 2023, Greenland lost 563 cubic miles (2,347 cubic kilometers) of ice, which […]

Why aren't there giant animals anymore?

Contrary to Cope's Rule, today's animals, including polar bears, are shrinking due to climate change and human impacts.

The Neuroscience Behind Vermeer's Girl and Its Hypnotic Power

There's a reason why viewers can't look away from Vermeer's masterpiece.

NASA spots Christmas "tree" and "wreath" in the cosmos

NASA has captured the holiday spirit in space with stunning images of NGC 602 and NGC 2264.

How Our Human Lineage Broke All the Rules of Vertebrate Evolution

New study challenges traditional views on human evolution with "bizarre" findings.

A giant volcano spanning 280 miles and taller than Mt. Everest was discovered on Mars

Noctis Mons marks a monumental volcanic discovery on Mars, reshaping our understanding of the Red Planet's geology.

The Future of Acne Scar Treatment: How Exosomes and Fractional CO2 Lasers are Changing the Game

Acne scars no longer have to be a permanent reminder—discover how cutting-edge treatments like exosomes and fractional CO2 lasers are transforming skin rejuvenation.

Why Santa’s Reindeer Are All Female, According to Biology

Move over, Rudolph—Santa’s sleigh team might just be a league of extraordinary females.