homehome Home chatchat Notifications


How did the first sugars appear? A question as important as the origin of life

Could a simple chemical, glyoxylate, have paved the way for the evolution of early life on Earth?

Tibi Puiu
June 7, 2023 @ 12:02 pm

share Share

Sugar molecule
Credit: Melscience.

Sugar is an essential component of life as we know it, found in everything from the sweetest fruits to the very backbone of our DNA. But how did this vital molecule arise in the first place?

A new study published in the journal Chem by two prominent origin-of-life chemists from Scripps Research and the Georgia Institute of Technology proposes an alternative hypothesis for how the first sugars, necessary for life to evolve, may have originated on the early Earth.

The origin-of-life chemistry

For decades, the prevailing theory has been that the first sugars arose from reactions involving formaldehyde. However, this theory has its drawbacks, as the reactions proposed are messy and have uncontrolled side effects.

Now, the chemists behind the new study suggest that glyoxylate, a relatively simple chemical that plausibly existed on the Earth before life evolved, could have played a key role in the emergence of the sugars necessary for early life forms.

A new hypothesis states that the first sugars emerged from glyoxylate (pictured as the center molecule). Credit: Scripps Research and Unsplash.

The proposed alternative is a “glyoxylose reaction” scenario in which glyoxylate reacts with itself, forming a close cousin of formaldehyde known as glycolaldehyde. From there, the researchers suggest that glyoxylate, glycolaldehyde, and other simple compounds could have continued to react with one another. Ultimately, these reactions could have yielded simple sugars and other products—without the drawbacks of formaldehyde-based reactions.

“We show that our new hypothesis has key advantages over the more traditional view that early sugars arose from the chemical formaldehyde,” says Ramanarayanan Krishnamurthy, a professor in the Department of Chemistry at Scripps Research.

Origin-of-life chemists seek to explain how the basic molecular building blocks and reactions necessary for life could have arisen from the simple chemicals that were likely present on the “prebiotic” Earth. The overarching aim of the field is to answer the fundamental question of how our living planet came to be.

But its discoveries also can inform—and have informed—many other fields, from atmospheric science and geology to synthetic biology and the search for life on other planets.

A new primordial soup

The proposed hypothesis adds to the growing body of research that is expanding our understanding of how life might have emerged from the primordial soup of the early Earth.

The three major classes of biological molecules whose availability needs to be explained by origin-of-life chemistry are: the amino acids that make up proteins, the nucleobases that make up the “letters” of DNA and RNA, and the sugars (also called carbohydrates) that are found throughout biology, including in the twisted backbone structure of DNA and RNA.

According to the prevailing theories, amino acids probably arose from ammonia, while nucleobases arose from hydrogen cyanide.

However, the origin of sugars has remained a mystery, with many scientists continuing to search for answers. The proposed hypothesis offers a potential solution and may lead to further discoveries about the early Earth and the origins of life.

The chemists behind the study are currently working to demonstrate in the laboratory that the glyoxylose reaction scenario could indeed have yielded the first sugars. They are also investigating potential commercial applications of reactions that make glyoxylate, which could be used to reduce CO2 levels, either locally in industrial settings or globally to combat global warming.

share Share

A Software Engineer Created a PDF Bigger Than the Universe and Yes It's Real

Forget country-sized PDFs — someone just made one bigger than the universe.

The World's Tiniest Pacemaker is Smaller Than a Grain of Rice. It's Injected with a Syringe and Works using Light

This new pacemaker is so small doctors could inject it directly into your heart.

Scientists Just Made Cement 17x Tougher — By Looking at Seashells

Cement is a carbon monster — but scientists are taking a cue from seashells to make it tougher, safer, and greener.

Three Secret Russian Satellites Moved Strangely in Orbit and Then Dropped an Unidentified Object

We may be witnessing a glimpse into space warfare.

Researchers Say They’ve Solved One of the Most Annoying Flaws in AI Art

A new method that could finally fix the bizarre distortions in AI-generated images when they're anything but square.

The small town in Germany where both the car and the bicycle were invented

In the quiet German town of Mannheim, two radical inventions—the bicycle and the automobile—took their first wobbly rides and forever changed how the world moves.

Scientists Created a Chymeric Mouse Using Billion-Year-Old Genes That Predate Animals

A mouse was born using prehistoric genes and the results could transform regenerative medicine.

Americans Will Spend 6.5 Billion Hours on Filing Taxes This Year and It’s Costing Them Big

The hidden cost of filing taxes is worse than you think.

Underwater Tool Use: These Rainbow-Colored Fish Smash Shells With Rocks

Wrasse fish crack open shells with rocks in behavior once thought exclusive to mammals and birds.

This strange rock on Mars is forcing us to rethink the Red Planet’s history

A strange rock covered in tiny spheres may hold secrets to Mars’ watery — or fiery — past.