ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

How did the first sugars appear? A question as important as the origin of life

Could a simple chemical, glyoxylate, have paved the way for the evolution of early life on Earth?

Tibi PuiubyTibi Puiu
June 7, 2023
in Chemistry, News
A A
Edited and reviewed by Zoe Gordon
Share on FacebookShare on TwitterSubmit to Reddit
Sugar molecule
Credit: Melscience.

Sugar is an essential component of life as we know it, found in everything from the sweetest fruits to the very backbone of our DNA. But how did this vital molecule arise in the first place?

A new study published in the journal Chem by two prominent origin-of-life chemists from Scripps Research and the Georgia Institute of Technology proposes an alternative hypothesis for how the first sugars, necessary for life to evolve, may have originated on the early Earth.

The origin-of-life chemistry

For decades, the prevailing theory has been that the first sugars arose from reactions involving formaldehyde. However, this theory has its drawbacks, as the reactions proposed are messy and have uncontrolled side effects.

Now, the chemists behind the new study suggest that glyoxylate, a relatively simple chemical that plausibly existed on the Earth before life evolved, could have played a key role in the emergence of the sugars necessary for early life forms.

A new hypothesis states that the first sugars emerged from glyoxylate (pictured as the center molecule). Credit: Scripps Research and Unsplash.

The proposed alternative is a “glyoxylose reaction” scenario in which glyoxylate reacts with itself, forming a close cousin of formaldehyde known as glycolaldehyde. From there, the researchers suggest that glyoxylate, glycolaldehyde, and other simple compounds could have continued to react with one another. Ultimately, these reactions could have yielded simple sugars and other products—without the drawbacks of formaldehyde-based reactions.

“We show that our new hypothesis has key advantages over the more traditional view that early sugars arose from the chemical formaldehyde,” says Ramanarayanan Krishnamurthy, a professor in the Department of Chemistry at Scripps Research.

Origin-of-life chemists seek to explain how the basic molecular building blocks and reactions necessary for life could have arisen from the simple chemicals that were likely present on the “prebiotic” Earth. The overarching aim of the field is to answer the fundamental question of how our living planet came to be.

RelatedPosts

Temperature extremes on both ends impair bees’ flight, raising new concerns about climate change
Stress, lack of sleep might be contributing to concussion-like symptoms
Elon Musk unveils the ITS: a spaceship capable of carrying 100 people destined to settle Mars
Pig grunts can help us understand their inner emotions

But its discoveries also can inform—and have informed—many other fields, from atmospheric science and geology to synthetic biology and the search for life on other planets.

A new primordial soup

The proposed hypothesis adds to the growing body of research that is expanding our understanding of how life might have emerged from the primordial soup of the early Earth.

The three major classes of biological molecules whose availability needs to be explained by origin-of-life chemistry are: the amino acids that make up proteins, the nucleobases that make up the “letters” of DNA and RNA, and the sugars (also called carbohydrates) that are found throughout biology, including in the twisted backbone structure of DNA and RNA.

According to the prevailing theories, amino acids probably arose from ammonia, while nucleobases arose from hydrogen cyanide.

However, the origin of sugars has remained a mystery, with many scientists continuing to search for answers. The proposed hypothesis offers a potential solution and may lead to further discoveries about the early Earth and the origins of life.

The chemists behind the study are currently working to demonstrate in the laboratory that the glyoxylose reaction scenario could indeed have yielded the first sugars. They are also investigating potential commercial applications of reactions that make glyoxylate, which could be used to reduce CO2 levels, either locally in industrial settings or globally to combat global warming.

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Culture & Society

What’s Seasonal Body Image Dissatisfaction and How Not to Fall into Its Trap

byAlexandra Gerea
2 days ago
Mind & Brain

Why a 20-Minute Nap Could Be Key to Unlocking ‘Eureka!’ Moments Like Salvador Dalí

byTibi Puiu
2 days ago
Anthropology

The world’s oldest boomerang is even older than we thought, but it’s not Australian

byMihai Andrei
2 days ago
Future

Swarms of tiny robots could go up your nose, melt the mucus and clean your sinuses

byMihai Andrei
2 days ago

Recent news

What’s Seasonal Body Image Dissatisfaction and How Not to Fall into Its Trap

June 28, 2025

Why a 20-Minute Nap Could Be Key to Unlocking ‘Eureka!’ Moments Like Salvador Dalí

June 28, 2025

The world’s oldest boomerang is even older than we thought, but it’s not Australian

June 27, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.