homehome Home chatchat Notifications


Some mice may owe monogamy to a specialized cell -- and this could be significant for humans

The hormone that may be behind this is also found in humans, but it's not clear what it does.

Mihai Andrei
July 4, 2024 @ 1:31 pm

share Share

A (probably promiscuous) deer mouse photographed at the Seney Natural History Association. Image credits: Dawn Marsh / Wiki Commons.

Monogamy is a pretty strange thing in the animal world. Some animals do it, but most don’t. Sometimes, it brings clear practical advantages, but other times, it’s not apparent why some animals are monogamous. This also goes for mice.

The new study looked at the deer mouse (Peromyscus maniculatus), which ranges all across North America, and the oldfield mouse (Peromyscus polionotus), which mostly lives in Florida and Georgia. The mice are similar in many ways and are closely related biologically. However, their love life is vastly different.

Whereas the oldfield mouse mates for life, the deer mouse will get it on as much as possible. Researchers wanted to see why two similar species can behave so differently when it comes to promiscuity.

It’s not the first time the two species have been compared. Researchers looked at their skulls, teeth, overall anatomy, and even their genetics — and didn’t find big differences. If there was one thing causing the monogamy difference, it would likely be a hormone.

So researchers looked more closely at their adrenal glands.

The adrenal glands of a deer mouse (left) and oldfield mouse (right), showing the relative size of the zona fasciculata (green) and the novel zona inaudita (red). Image Credits: Bendesky lab / Columbia’s Zuckerman Institute.

The size difference of these organs between the two species is stunning. Gram per gram, the adrenals of the monogamous mice are roughly six times heavier than those of promiscuous mice. They also produce a lot of hormones, including ones that are quite likely linked to sexual behavior.

“This pair of organs, located in the abdomen, produces many hormones important for behavior,” said Andrés Bendesky, MD, PhD, a principal investigator at Columbia’s Zuckerman Institute. “These include stress hormones such as adrenaline, but also a number of sex hormones.”

“This extraordinary difference in the size of an internal organ between such closely related species is unprecedented,” Bendesky said.

The researchers note that while these glands are divided into three zones, the monogamous mouse has a fourth zone.

“We called this the zona inaudita, which is Latin for ‘previously unheard-of zone,’ because no one has ever observed this type of cell in another animal,” said Natalie Niepoth, Ph.D., a co-first author on the study who is now a senior scientist at Regeneron.

In this “zona inaudita”, the researchers uncovered 194 genes that were very active. In particular, one gene, called Akr1c18, was much more active in the monogamous mice. This enzyme helps create a hormone called 20⍺-OHP. The hormone is poorly understood, even though it is found in many more mammal species, including humans.

“The hormone from these cells was actually first discovered in humans many decades ago, but nobody really knew what it did,” said “We’ve discovered that it can promote nurturing in mice, which gives us an idea of what it might be doing in humans.”

The researchers suspect that one of the key differences leading to this unexpected monogamy may be linked to this hormone, although this is still speculative at the moment. Ultimately, the team hopes that their findings will spur more research, not just in mice but also in humans.

“I hope that our study motivates further investigation into the link between 20⍺-OHP and parenting in humans,” said Jennifer R. Merritt, Ph.D., a co-first author on the study and postdoctoral researcher in the Bendesky lab. “We have so much to learn about the role this hormone plays in human parental behavior.”

Journal Reference: Andres Bendesky, Evolution of a novel adrenal cell type that promotes parental care, Nature (2024). DOI: 10.1038/s41586-024-07423-y. www.nature.com/articles/s41586-024-07423-y

share Share

Biggest Modern Excavation in Tower of London Unearths the Stories of the Forgotten Inhabitants

As the dig deeper under the Tower of London they are unearthing as much history as stone.

Millions Of Users Are Turning To AI Jesus For Guidance And Experts Warn It Could Be Dangerous

AI chatbots posing as Jesus raise questions about profit, theology, and manipulation.

Can Giant Airbags Make Plane Crashes Survivable? Two Engineers Think So

Two young inventors designed an AI-powered system to cocoon planes before impact.

First Food to Boost Immunity: Why Blueberries Could Be Your Baby’s Best First Bite

Blueberries have the potential to give a sweet head start to your baby’s gut and immunity.

Ice Age People Used 32 Repeating Symbols in Caves Across the World. They May Reveal the First Steps Toward Writing

These simple dots and zigzags from 40,000 years ago may have been the world’s first symbols.

NASA Found Signs That Dwarf Planet Ceres May Have Once Supported Life

In its youth, the dwarf planet Ceres may have brewed a chemical banquet beneath its icy crust.

Nudists Are Furious Over Elon Musk's Plan to Expand SpaceX Launches in Florida -- And They're Fighting Back

A legal nude beach in Florida may become the latest casualty of the space race

A Pig Kidney Transplant Saved This Man's Life — And Now the FDA Is Betting It Could Save Thousands More

A New Hampshire man no longer needs dialysis thanks to a gene-edited pig kidney.

The Earliest Titanium Dental Implants From the 1980s Are Still Working Nearly 40 Years Later

Longest implant study shows titanium roots still going strong decades later.

Common Painkillers Are Also Fueling Antibiotic Resistance

The antibiotic is only one factor creating resistance. Common painkillers seem to supercharge the process.