homehome Home chatchat Notifications


Heat-proof memory device can survive Venus-like environment

AI computers could operate in extreme environments like Venus, thanks to new heat-resistant technology.

Tibi Puiu
May 21, 2024 @ 12:56 pm

share Share


Researchers have developed a first-of-its-kind high-temperature-resistant memory device that can reliably store data at temperatures as high as 600° Celsius.
Researchers have developed a first-of-its-kind high-temperature-resistant memory device that can reliably store data at temperatures as high as 600° Celsius. Credit: University of Pennsylvania.

The longest a spacecraft has lasted on the surface of the hellscape that is Venus was a little over two hours. In 1981, the Soviet Venera 13 probe touched down on Venus. It relayed back some amazing color images and environmental data — and then promptly melted.

Venus is brutal. Its surface temperature hovers around 465°C (869°F) — as hot as an oven. The planet’s extremely thick atmosphere, primarily composed of carbon dioxide, exerts a tremendous amount of surface pressure roughly 92 times that of Earth’s at sea level. That’s comparable to being 900 meters (3,000 feet) underwater.

But what if our computers were capable of withstanding the extreme conditions on Venus? New research suggests this could someday become a reality.

Researchers at the University of Pennsylvania have developed a memory device made from aluminum scandium nitride (AlScN) that can function at temperatures high enough to melt rock.

“From deep-earth drilling to space exploration, our high-temperature memory devices could lead to advanced computing where other electronics and memory devices would falter,” said Deep Jariwala, associate professor at Penn Engineering. “This isn’t just about improving devices; it’s about enabling new frontiers in science and technology.”

A Breakthrough in Extreme Computing


Modern non-volatile memory (NVM) devices — meaning non-powered hardware such as hard drives or solid-state drives (SSDs) that store information without needing an active power source — fail at very high temperatures, causing your information to evaporate. Even the current state-of-the-art storage fails miserably at temperatures above 300 °C (572 °F).

However, the new ferroelectric diode created by scientists can operate at an astonishing 600 C (1,112 degrees F) for several hours. This advancement opens the door for sensors and computing devices to work in extreme environments, including AI systems.

The research centers on the use of ferroelectric AlScN. This material has emerged as a high-performance semiconductor option only in the past five years. Its main feature is its ability to retain an electrical state (on/off or the “1s” and “0s” used to represent digital data) even after an external electrical field is removed and at very high temperatures. The key to the device’s success lies in two main features. One is the precise metal–insulator–metal structure, which also incorporates platinum and nickel electrodes. The other is the diode’s thickness, which is a mere 45 nanometers.

This extremely thin structure is no accident. Rather, it’s the result of a lot of trial and error until the researchers settled on this Goldilocks thickness that strikes the perfect balance between ferroelectric switching and protection against material degradation.

The new device’s resilience was demonstrated by its ability to endure one million read cycles and maintain a stable on-off ratio for over six hours at scorching hot ambient temperatures. Naturally, this performance is described as “unprecedented” by the research team. The ability to combine this memory with processors could lead to computers that function in nearly any environment.

“AlScN’s crystal structure also gives it notably more stable and strong bonds between atoms, meaning it’s not just heat-resistant but also pretty durable,” said Dhiren Pradhan, study first author and a postdoctoral researcher the University of Pennsylvania.

“But more notably, our memory device design and properties allow for fast switching between electrical states, which is crucial for writing and reading data at high speed.”

A new form of device

Current silicon-based devices struggle in high-temperature environments. So, the industry traditionally employs silicon carbide technology, which is slower.

This breakthrough could herald a new era of non-silicon computing devices, capable of advanced data-heavy tasks. By meshing heat-resistant memory and processing units, scientists envision AI processors that can function in extreme conditions, potentially revolutionizing space exploration and industrial operations. As such, this is an exciting advancement that could open new frontiers in both scientific exploration and practical applications on Earth and beyond.

“While silicon carbide technology is great, it is nowhere close to the processing power of silicon processors, so advanced processing and data-heavy computing such as AI can’t really be done in high-temperature or any harsh environments,” Jariwala said.

“The stability of our memory device could allow integration of memory and processing more closely together, enhancing speed, complexity, and efficiency of computing. We call this ‘memory-enhanced compute’ and are working with other teams to set the stage for AI in new environments.”

The findings appeared in Nature Electronics.

share Share

The World's Tiniest Pacemaker is Smaller Than a Grain of Rice. It's Injected with a Syringe and Works using Light

This new pacemaker is so small doctors could inject it directly into your heart.

Scientists Just Made Cement 17x Tougher — By Looking at Seashells

Cement is a carbon monster — but scientists are taking a cue from seashells to make it tougher, safer, and greener.

Three Secret Russian Satellites Moved Strangely in Orbit and Then Dropped an Unidentified Object

We may be witnessing a glimpse into space warfare.

Researchers Say They’ve Solved One of the Most Annoying Flaws in AI Art

A new method that could finally fix the bizarre distortions in AI-generated images when they're anything but square.

The small town in Germany where both the car and the bicycle were invented

In the quiet German town of Mannheim, two radical inventions—the bicycle and the automobile—took their first wobbly rides and forever changed how the world moves.

Scientists Created a Chymeric Mouse Using Billion-Year-Old Genes That Predate Animals

A mouse was born using prehistoric genes and the results could transform regenerative medicine.

Americans Will Spend 6.5 Billion Hours on Filing Taxes This Year and It’s Costing Them Big

The hidden cost of filing taxes is worse than you think.

Underwater Tool Use: These Rainbow-Colored Fish Smash Shells With Rocks

Wrasse fish crack open shells with rocks in behavior once thought exclusive to mammals and birds.

This strange rock on Mars is forcing us to rethink the Red Planet’s history

A strange rock covered in tiny spheres may hold secrets to Mars’ watery — or fiery — past.

Scientists Found a 380-Million-Year-Old Trick in Velvet Worm Slime That Could Lead To Recyclable Bioplastic

Velvet worm slime could offer a solution to our plastic waste problem.