homehome Home chatchat Notifications


First DNA analysis of mummies shows ancient and modern Egyptians don't really have much in common anymore

An unprecedented research which will pave the way for more ancient mummy genome sequencing.

Tibi Puiu
May 31, 2017 @ 1:26 pm

share Share

In an impressive scientific breakthrough, an international team of researchers reports sequencing the genomes of ancient Egyptian mummies for the very first time. The study helps tie some of the loose ends around the river Nile in Middle Egypt and the ancient population that inhabited the region for millennia. One striking finding is that modern Egyptians are far more related to Sub-Saharan Africans than ancient Egyptians, who were most closely related to ancient populations in the Levant.

Egypt mummy

Sarcophagus of Tadja, Abusir el-Meleq. Credit: bpk/Aegyptisches Museum und Papyrussammlung, SMB/Sandra Steiss.

For many researchers working with DNA sequencing, Egypt is both a blessing and curse. It’s an almost ideal scientific proving ground because of its rich and well-documented history. It’s always been at the crossroads between many populations and cultural influences from Africa, Asia, or Europe. The practice of mummification which can be traced back to 6,000 years ago is also a godsend for many researchers since they have to rely less on the accidental preservation of remains. The ancient Egyptians did all the dirty work for them!

At the same time, Egypt’s aggressive climate, which is very hot and humid, can easily degrade the DNA. Even though archaeologists know of thousands of Egyptian mummies that are thousands of years old, the conditions in the tombs are such that the long-term survival of DNA in Egyptian mummies is very unlikely.

But thanks to a lot of hard work and recent advances in genetic sequencing, an international team was able to make a breakthrough and come up with an unprecedented glimpse into the genetic history of Egypt. The collaboration is comprised of researchers from the University of Tuebingen, the Max Planck Institute for the Science of Human History in Jena, the University of Cambridge, the Polish Academy of Sciences, and the Berlin Society of Anthropology, Ethnology, and Prehistory.

For their work, the authors sampled 151 mummified individuals from the archaeological site of Abusir el-Meleq, along the Nile River in Middle Egypt. In total, they recovered mitochondrial genomes (from the mother’s side only) from 90 individuals, and genome-wide datasets from three individuals over a 1,300-year time span. These results were then compared to modern populations.

Map of Egypt, showing the archaeological site of Abusir-el Meleq (orange X), and the location of the modern Egyptian samples used in the study (orange circles). Credit: Graphic: Annette Guenzel.

Map of Egypt, showing the archaeological site of Abusir-el Meleq (orange X), and the location of the modern Egyptian samples used in the study (orange circles). Credit: Graphic: Annette Guenzel.

This data allowed the researchers to assess the continuity in the genetic makeup of the ancient inhabitants of Abusir el-Meleq, but also to test previous hypotheses up to now confined to the realm of speculation.
“We wanted to test if the conquest of Alexander the Great and other foreign powers has left a genetic imprint on the ancient Egyptian population,” explains Verena Schuenemann, group leader at the University of Tuebingen and one of the lead authors of this study, in a statement.
Strikingly, despite going through various periods of foreign rules, from the Roman Empire to Macedonia, the Egyptian population remained relatively unaffected genetically during the 1,300-year timespan. At the same time, the data suggests modern Egyptians share approximately 8% more ancestry on the nuclear level with Sub-Saharan African populations than with ancient Egyptians.

“This suggests that an increase in Sub-Saharan African gene flow into Egypt occurred within the last 1,500 years,” explains Stephan Schiffels, group leader at the Max Planck Institute for the Science of Human History in Jena.

It’s amazing to finally hear about genetic investigations in ancient Egyptian mummies. Seemingly against all odds, science yet again proves that sometimes we must merely wait for technology to catch on with our needs. In the process, we now have a much richer understanding of Egypt’s population history.

share Share

Neanderthals Turned Cave Lion Bone into a 130,000-Year-Old 'Swiss Army Knife'

130,000-year-old discovery reveals a new side to our ancient cousins.

This Bionic Knee Plugs Into Your Bones and Nerves, and Feels Just Like A Real Body Part

No straps, no sockets: MIT team created a true bionic knee and successfully tested it on humans.

This New Bioplastic Is Clear Flexible and Stronger Than Oil-Based Plastic. And It’s Made by Microbes

New material mimics plastic’s versatility but biodegrades like a leaf.

Researchers Recreate the Quintessentially Roman Fish Sauce

Would you like some garum with that?

Why Warmer Countries Have Louder Languages

Language families in hotter regions evolved with more resonant, sonorous words, researchers find.

What Happens When You Throw a Paper Plane From Space? These Physicists Found Out

A simulated A4 paper plane takes a death dive from the ISS for science.

A New Vaccine Could Stop One of the Deadliest Forms of Breast Cancer Before It Starts

A phase 1 trial hints at a new era in cancer prevention

After 700 Years Underwater Divers Recovered 80-Ton Blocks from the Long-Lost Lighthouse of Alexandria

Divered recover 22 colossal blocks from one of the ancient world's greatest marvels.

Scientists Discover 9,000 Miles of Ancient Riverbeds on Mars. The Red Planet May Have Been Wet for Millions of Years

A new look at Mars makes you wonder just how wet it really was.

This Is Why Human Faces Look So Different From Neanderthals

Your face stops growing in a way that neanderthals' never did.