homehome Home chatchat Notifications


Scientists Develop World's Fastest Microscope — It's So Fast It Can Capture Electrons Moving

The new microscope captures the fleeting motions of electrons with unprecedented precision, revealing the hidden dynamics of the subatomic world.

Tibi Puiu
August 22, 2024 @ 11:38 pm

share Share

illustration of atoms
Credit: Pixabay.

Physicists at the University of Arizona have achieved a significant breakthrough in imaging the subatomic world. They have developed the world’s fastest electron microscope, capable of capturing events that last just one attosecond — a quintillionth of a second.

These cutting-edge instruments are vital for studying ultrafast processes. An “attomicroscope” operates on a scale that dwarfs even the fastest cameras. Essentially, it freezes time to observe events at the particle level, including moving electrons. An attosecond is a staggeringly brief moment — there are as many attoseconds in a single second as there are seconds in 31.7 billion years.

Picking Up the Pace

Electron microscopes magnify objects by directing beams of electrons through a sample. But, traditionally, they are limited in how they capture movement. Camera lenses capture interaction between the electrons and the sample, and a camera sensor detects it in order to generate detailed images of the sample. 

While past innovations allowed scientists to observe electron behavior over time, they were still missing crucial details. It was the microscopic equivalent of seeing a movie in slow motion but with annoying missing frames in between.

Until now, the shortest event ever recorded was 43 attoseconds long, an achievement previously described as “the shortest controlled event ever created by humankind.” However, the University of Arizona team has now outdone this by achieving an unprecedented one-attosecond resolution. The faster the pulse, the better the image quality.

“When you get the latest version of a smartphone, it comes with a better camera,” said Associate Professor Mohammed Hassan. “This transmission electron microscope is like a very powerful camera in the latest version of smartphones; it allows us to take pictures of things we were not able to see before — like electrons. With this microscope, we hope the scientific community can understand the quantum physics behind how an electron behaves and how an electron moves.”

The research builds on the 2023 Nobel Prize-winning work of Pierre Agostini, Ferenc Krausz, and Anne L’Huillier, who pioneered the creation of ultrashort light pulses in the attosecond range. By refining these techniques and applying them to electron microscopy, the University of Arizona team has opened a new frontier in scientific imaging.

A Leap Forward in Microscopy

The attomicroscope
The ‘attomicroscope’ consists of two sections. The top produces an ultraviolet pulse releasing ultra-fast electrons inside the microscope. The bottom section uses another two lasers to gate, initiate and precisely control electron movement in the sample being studied. Credit: University of Arizona.

Their attosecond system involves a powerful laser split into two components: a fast electron pulse and two ultrashort light pulses. The first light pulse, called the pump pulse, energizes a sample, triggering electron movement or other rapid changes. The second pulse, known as the optical gating pulse, creates a brief window to generate a single attosecond electron pulse. The timing of this gating pulse determines the image resolution. By precisely synchronizing these pulses, researchers can control when the electron pulses probe the sample, allowing them to observe ultrafast atomic-level processes.

This advancement is poised to impact a wide array of fields, from physics and chemistry to materials science and bioengineering. By providing an unprecedented view into the behavior of electrons, the microscope could unlock new insights into quantum mechanics, the development of new materials, and even biological processes at the molecular level.

“The improvement of the temporal resolution inside of electron microscopes has been long anticipated and the focus of many research groups, because we all want to see the electron motion,” Hassan said. “These movements happen in attoseconds. But now, for the first time, we are able to attain attosecond temporal resolution with our electron transmission microscope — and we coined it ‘attomicroscopy.’ For the first time, we can see pieces of the electron in motion.”

The findings appeared in the journal Science Advances.

share Share

Researchers Say They’ve Solved One of the Most Annoying Flaws in AI Art

A new method that could finally fix the bizarre distortions in AI-generated images when they're anything but square.

The small town in Germany where both the car and the bycicle were invented

In the quiet German town of Mannheim, two radical inventions—the bicycle and the automobile—took their first wobbly rides and forever changed how the world moves.

Scientists Created a Chymeric Mouse Using Billion-Year-Old Genes That Predate Animals

A mouse was born using prehistoric genes and the results could transform regenerative medicine.

Americans Will Spend 6.5 Billion Hours on Filing Taxes This Year and It’s Costing Them Big

The hidden cost of filing taxes is worse than you think.

Underwater Tool Use: These Rainbow-Colored Fish Smash Shells With Rocks

Wrasse fish crack open shells with rocks in behavior once thought exclusive to mammals and birds.

This strange rock on Mars is forcing us to rethink the Red Planet’s history

A strange rock covered in tiny spheres may hold secrets to Mars’ watery — or fiery — past.

Scientists Found a 380-Million-Year-Old Trick in Velvet Worm Slime That Could Lead To Recyclable Bioplastic

Velvet worm slime could offer a solution to our plastic waste problem.

A Dutch 17-Year-Old Forgot His Native Language After Knee Surgery and Spoke Only English Even Though He Had Never Used It Outside School

He experienced foreign language syndrome for about 24 hours, and remembered every single detail of the incident even after recovery.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.