homehome Home chatchat Notifications


Earth's day was a constant 19.5 hours for over a billion years

Without this pause, a day would have stretched to over 60 hours.

Tibi Puiu
July 6, 2023 @ 10:30 pm

share Share

Earth and the moon
The gravitational interaction between Earth and Moon drives the length of day — but the sun also has something to say about it. Credit: Kevin M. Gill.

Have you ever wondered why our day — the time it takes for the planet to make a complete revolution around its own axis — is 24 hours long? It turns out that the Earth’s rotation has been gradually slowing down over billions of years due to the tidal pull of the moon.

For instance, during Earth’s early history, the moon was much closer than it is today and a day lasted only four hours. Subsequent research showed that Earth’s spin is slowing by 1.35 seconds every 100,000 years.

However, a recent study by a team of astrophysicists at the University of Toronto has uncovered an intriguing twist in this story. They have discovered that, for over a billion years, an atmospheric tide generated by the sun counteracted the moon’s influence, maintaining a steady 19.5-hour day.

This pause in the slowing of Earth’s rotation has had a profound impact on the length of our day as we know it. Were it not for this pause, days on Earth today would stretch over 60 hours.

The tidal battle: Moon vs. Sun

Since the moon formed around 4.5 billion years ago, its gravitational pull has been gradually slowing down Earth’s rotation. The moon’s gravitational pull creates tidal bulges on opposite sides of the planet, causing the familiar ebb and flow of high and low tides. And the friction between these tides and the ocean floor acts like a brake, slowing down Earth’s rotation.

However, the sun makes its own contribution to Earth’s rotation. Sunlight generates an atmospheric tide that creates bulges in the atmosphere, just like the moon does with ocean tides. But unlike the moon, the sun’s gravity accelerates Earth’s rotation rather than decelerating it.

Nevertheless, throughout Earth’s history, the lunar tides have dominated the solar tides, causing our planet’s rotational speed to decrease and the length of the day to increase. However, around two billion years ago, a fascinating interplay between the atmosphere’s temperature, its natural resonance, and Earth’s rotational rate came into play.

geological evidence
The researchers relied on geologic evidence in their study, like these samples from a tidal estuary that reveal the cycle of spring and neap tides. Credit: G.E. Williams

In their new study, the scientists, led by theoretical astrophysicist Norman Murray, drew on geological evidence and employed atmospheric research tools to unravel the connection between the atmosphere’s temperature and Earth’s rotational rate. They discovered that the atmospheric bulges were larger during this period due to the warmer atmosphere.

The atmosphere acted like a resonating bell, vibrating at a frequency determined by various factors, including temperature. Waves, similar to those produced by volcanic eruptions or other disturbances, travel through the atmosphere at a velocity determined by its temperature. When the atmospheric resonance and the length of the day became synchronized, the atmospheric tide gained strength, resulting in larger bulges and a significant counteraction to the lunar tide.

Confused? Imagine pushing a child on a swing. If your pushes and the swing’s rhythm are out of sync, it won’t achieve much height. However, when your push aligns with the swing’s movement, adding momentum at just the right moment, it swings higher and further.

This is what happened to the atmospheric resonance and tide that occurred billions of years ago. When the resonance and the length of the day were perfectly matched, the atmospheric tide intensified, propelling Earth’s rotation further and keeping the day at a constant 19.5 hours.

While the billion-year pause in the lengthening of our day may seem distant in geological history, it carries significant implications for our present-day climate crisis. Much of the work conducted by the University of Toronto researchers hinged on global atmospheric circulation models (GCMs) commonly employed by climatologists studying climate change. This successful application of GCMs offers an important lesson, emphasizing their accuracy and reliability in understanding Earth’s complex systems.

As our planet’s temperature rises due to global warming, the resonance of the atmosphere shifts. This shift moves our atmosphere away from the perfect alignment it once had, resulting in less torque from the sun and, consequently, an accelerated lengthening of the day. Yes, climate change is making days longer now.

The findings appeared in the journal Science Advances.

share Share

How Hot is the Moon? A New NASA Mission is About to Find Out

Understanding how heat moves through the lunar regolith can help scientists understand how the Moon's interior formed.

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.