homehome Home chatchat Notifications


Earth may have generated its own water - geologically

A new study may have finally found where Earth’s water came from. There are currently two competing theories, with one claiming that our planet generated its own water geologically, while the other suggests that water was brought by icy comets or asteroids from outside. A new study concluded that most of the water we see […]

Mihai Andrei
January 13, 2015 @ 2:57 am

share Share

A new study may have finally found where Earth’s water came from. There are currently two competing theories, with one claiming that our planet generated its own water geologically, while the other suggests that water was brought by icy comets or asteroids from outside. A new study concluded that most of the water we see today likely comes from the Earth’s mantle.

Water beneath the surface

Image via Special Papers.

Until recently, the idea that water came to Earth from somewhere else in the solar system seemed to have more support, but studies conducted by the European Space Agency on the Rosetta missions showed that water almost certainly didn’t come from comets. Wendy Panero, associate professor of earth sciences at Ohio State, and doctoral student Jeff Pigott believe that when the Earth formed, it had huge bodies of water in its interior, and has been continuously supplying water to the surface via plate tectonics, circulating material upward from the mantle.

Researchers have long known that there is some water in the earth’s mantle, but nobody knows just how much. Because you can’t go 40 km deep and study the mantle, you have to rely on indirect information and computer simulations.

“When we look into the origins of water on Earth, what we’re really asking is, why are we so different than all the other planets?” Panero said. “In this solar system, Earth is unique because we have liquid water on the surface. We’re also the only planet with active plate tectonics. Maybe this water in the mantle is key to plate tectonics, and that’s part of what makes Earth habitable.”

The thing is, when we’re talking about water in the mantle, it’s not actually liquid water – what seems dry to the human eye may actually have significant quantities of water – in the form of hydrogen and oxygen waters. Hydrogen is typically stored in crystal voids and defects, while oxygen is usually plentiful in most minerals. Certain reactions can free up the hydrogen and oxygen, resulting in water; but could it be enough water to amount for the oceans we see today?

The key element here is ringwoodite.

High-Pressure Olivine

Olivine is a magnesium-iron silicate typically found in the mantle and igneous rocks. However, in the mantle, at very high pressures and temperatures, the olivine structure is no longer stable. Below depths of about 410 km (250 mi) olivine undergoes a transformation, transforming into ringwoodite or bridgmanite. Ringwoodite is notable for being able to contain hydroxide ions (oxygen and hydrogen atoms bound together) and previous research has already shown that the earth’s mantle holds huge quantities of water.

Now, this team has found that the mineral bridgmanite doesn’t contain enough water to play a significant role in this issue – so it’s all about the ringwoodite. But the question is – if ringwoodite is trapped in the mantle and the water is drained towards the surface in plate tectonics, how does our planet still have water reserves now, in the mantle?

But while they were creating some models and simulations of ringwoodite water behavior, another likely candidate emerged: garnet. Garnet could be a water carrier, transporting some of the water to the surface, while some of it still remains in the mantle.

“If all of the Earth’s water is on the surface, that gives us one interpretation of the water cycle, where we can think of water cycling from oceans into the atmosphere and into the groundwater over millions of years,” she said. “But if mantle circulation is also part of the water cycle, the total cycle time for our planet’s water has to be billions of years.”

share Share

How Hot is the Moon? A New NASA Mission is About to Find Out

Understanding how heat moves through the lunar regolith can help scientists understand how the Moon's interior formed.

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.