homehome Home chatchat Notifications


This chart shows the risk of COVID-19 for different distancing settings and scenarios

This nuanced 'cheat sheet' shows when and where the risk of coronavirus transmission is greatest or lowest.

Tibi Puiu
August 27, 2020 @ 2:50 pm

share Share

Virtually every government-sponsored public service announcement since the pandemic began centers around the mantra of keeping a six feet (2 meters) distance between yourself and others. While this is a sensible suggestion, it is by no means foolproof. In fact, in some situations, this sort of distancing might offer virtually zero protection against infection with SARS-CoV-2, the virus that causes COVID-19.

Writing in the prestigious BMJ, a team of scientists led by Nicholas Jones, a clinical researcher at the University of Oxford, argues that “rigid safe distancing rules are an oversimplification based on outdated science and experiences of past viruses”. Instead, the scientists have proposed a more nuanced set of physical distancing rules that evaluates the risk of viral transmission based on setting, occupancy level, contact time, and whether face coverings are worn or not.

Tap or click to zoom. The risk of SARS-CoV-2 transmission from asymptomatic people in different settings and for different occupation times, venting, and crowding levels (ignoring variation in susceptibility and viral shedding rates). Credit: BMJ.

“Rules that stipulate a single specific physical distance (1 or 2 metres) between individuals to reduce transmission of SARS-CoV-2, the virus causing COVID-19, are based on an outdated, dichotomous notion of respiratory droplet size. This overlooks the physics of respiratory emissions, where droplets of all sizes are trapped and moved by the exhaled moist and hot turbulent gas cloud that keeps them concentrated as it carries them over metres in a few seconds. After the cloud slows sufficiently, ventilation, specific patterns of airflow, and type of activity become important. Viral load of the emitter, duration of exposure, and susceptibility of an individual to infection are also important,” the authors wrote in their study.

This physical distancing rule cheat sheet is based on the most recent findings concerning SARS-CoV-2 transmission. For instance, the authors of the review mention nine studies in hospital- and two in community settings that detected viral particles in air samples, suggesting the coronavirus can be spread through the air.

Other studies show that heavy breathing, singing, coughing, and sneezing generate enough moist, high momentum gas clouds of exhaled air that can extend the range of respiratory droplets up to 7-8 meters within a few seconds. This explains why a single person at one choir practice in the US managed to infect at least 32 other singers despite physical distancing. On the same note, specific airflow and ventilation patterns can be very important in determining the risk of viral transmission.

Of course, all these environmental factors also couple with whether a person wears a mask when determining the risk of infection.

“Further work is needed to extend our guide to develop specific solutions to classes of indoor environments occupied at various usage levels. Urgent research is needed to examine three areas of uncertainty: the cut-off duration of exposures in relation to the indoor condition, occupancy, and level of viral shedding (5-15 minute current ad-hoc rules), which does not seem to be supported by evidence; the detailed study of airflow patterns with respect to the infected source and its competition with average venting; and the patterns and properties of respiratory emissions and droplet infectivity within them during various physical activities,” the authors wrote.

“Physical distancing should be seen as only one part of a wider public health approach to containing the COVID-19 pandemic. It needs to be implemented alongside combined strategies of people-air-surface-space management, including hand hygiene, cleaning, occupancy, and indoor space and air managements, and appropriate protective equipment, such as masks, for the setting.”

share Share

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

We Should Start Worrying About Space Piracy. Here's Why This Could be A Big Deal

“We are arguing that it’s already started," say experts.

An Experimental Drug Just Slashed Genetic Heart Risk by 94%

One in 10 people carry this genetic heart risk. There's never been a treatment — until now.

We’re Getting Very Close to a Birth Control Pill for Men

Scientists may have just cracked the code for male birth control.

A New Antibiotic Was Hiding in Backyard Dirt and It Might Save Millions

A new antibiotic works when others fail.

Researchers Wake Up Algae That Went Dormant Before the First Pyramids

Scientists have revived 7,000-year-old algae from Baltic Sea sediments, pushing the limits of resurrection ecology.

A Fossil So Strange Scientists Think It’s From a Completely New Form of Life

This towering mystery fossil baffled scientists for 180 Years and it just got weirder.

ChatGPT Seems To Be Shifting to the Right. What Does That Even Mean?

ChatGPT doesn't have any political agenda but some unknown factor is causing a subtle shift in its responses.

This Freshwater Fish Can Live Over 120 Years and Shows No Signs of Aging. But It Has a Problem

An ancient freshwater species may be quietly facing a silent collapse.