homehome Home chatchat Notifications


Did black holes form right after the Big Bang?

How did they get so big in such a "short" time?

Mihai Andrei
February 10, 2023 @ 8:03 pm

share Share

We still don’t know how the first black holes formed — or when they formed. To have gotten as big as they seem to be today, they may have emerged right after the universe was formed, a new study concludes.

Credits: ESA.

Black holes are quite possibly the most fascinating objects in the universe. They’re objects (technically, regions of spacetime) so massive that their gravitational fields don’t allow anything, not even particles or light to escape. Black holes are intriguing for a number of reasons — for starters, they’re so extreme they test our very understanding of physics, and they shape the planets, stars, and galaxies around them. Some have even speculated that our universe may have been born out of a black hole, and while there’s a fair bit of speculation to that idea, it just goes to show how little we truly understand about these objects.

But when exactly did black holes first form?

Black everything

The early days of the universe were a hot mess — quite literally. After the Big Bang, the universe was basically a hot soup of particles, and only when it cooled down a bit could the particles (protons and neutrons) form the first hydrogen atoms. It would be a few hundred million years after the big bang, however, that the first stars formed, but when exactly these stars formed is still a mystery, and the same can be said of black holes.

Black holes usually form from the remnants of a large star that dies in a supernova explosion. The oldest black hole we know of is 13.80 billion years old, forming just 690 million years after the big bang. It’s also a massive black hole, at 800 million times the mass of the Sun.

This is puzzling. How did a black hole so massive form so early in the universe, what did it form from? Plus, it’s unlikely that we found the oldest black hole, there are possibly even older ones out there, and our current understanding of the universe struggles to explain something like that. Meanwhile, on the other end of the scale, there could be some small early black holes (as highlighted by observations from ESA’s Gaia). These black holes seem too small to have formed from stars, so how did they form exactly?

“Black holes of different sizes are still a mystery. We don’t understand how supermassive black holes could have grown so huge in the relatively short time available since the Universe existed,” explains Günther Hasinger, the author of a recent study on the early days of black holes.

Hasinger and colleagues believe that these dilemmas can be explained through so-called ‘primordial black holes’, and these black holes could themselves be the as-of-yet unexplained dark matter.

“Our study shows that without introducing new particles or new physics, we can solve mysteries of modern cosmology from the nature of dark matter itself to the origin of supermassive black holes,” says Nico Cappelluti.

If these primordial black holes formed immediately after the Big Bang, they emerged from some regions of space that were dense enough to undergo gravitational collapse. These black holes would have swallowed gas and other stars, growing and merging to become the supermassive black holes we see today at the center of galaxies. Small black holes would simply be primordial black holes that have not merged with others.

However, the experimental data isn’t there to confirm this model — yet. These early black hole mergers would have produced a signal, and The European Space Agency’s future gravitational wave space observatory, LISA, might pick up the signals.

The recently launched James Webb Space Telescope could also find telltale signs of these primordial black hole mergers.

“If the first stars and galaxies already formed in the so-called ‘dark ages’, Webb should be able to see evidence of them,” adds Hasinger.

Journal Reference: “Exploring the high-redshift PBH-ΛCDM Universe: early black hole seeding, the first stars and cosmic radiation backgrounds,” by N. Cappelluti, G. Hasinger and P. Natarajan, The Astrophysical Journal.

share Share

How Hot is the Moon? A New NASA Mission is About to Find Out

Understanding how heat moves through the lunar regolith can help scientists understand how the Moon's interior formed.

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.