homehome Home chatchat Notifications


Curiosity Finds Clues of a Cold, Wet Mars Billions of Years Ago

Amorphous materials, which are rarely studied on Earth, yield insights into the history of Gale Crater and the early Martian environment.

Damond Benningfield
August 21, 2024 @ 6:37 pm

share Share

Water might once have flowed through Gediz Vallis in Gale Crater, which Curiosity studied in early 2024. The layered structure at left is Hinman Col. This view has been color adjusted to depict the scene under terrestrial lighting conditions. Credit: NASA/JPL-Caltech/MSSS

Sediments discovered by NASA’s Curiosity rover in Gale Crater imply that early Mars was wet and cold, according to a recent study that compared Martian samples to similar soils on Earth. The finding could inform whether the Red Planet was once habitable.

Curiosity’s Chemistry and Mineralogy (CheMin) instrument, which uses X-rays to measure the composition of minerals in soil and rock samples on the basis of their crystal structure, has found high concentrations of amorphous materials in Gale Crater—15%–73% by weight, depending on the location.

“These materials suggest that the warmest conditions on Mars probably weren’t all that warm,” said Anthony Feldman, a postdoctoral researcher at the Desert Research Institute in Las Vegas and lead author of the study.

Minerals have a highly ordered crystalline structure, like rows of encyclopedias neatly arranged on a library shelf. Geologists have determined how those structures, and thus different minerals, form, so knowing what minerals are present in rocks from a landscape allows them to piece together that location’s history. Amorphous materials, on the other hand, are disordered, as though the encyclopedias were strewn at random across the shelves and floor, making it difficult to find out how they formed.

Curiosity snapped this image of the sample funnel for the CheMin instrument. The funnel is about 3.5 centimeters in diameter. Although designed to study minerals in the Martian rocks and soil, CheMin has also found an abundance of materials with no mineral structure. Credit: NASA/JPL-Caltech/MSSS

Finding such a high level of amorphous materials on Mars was unexpected, in part because such materials are rare on Earth. The ordered crystalline structure of minerals makes them more stable, but the Martian amorphous materials were found in layers deposited a few billion years ago.

“This stuff is stable on Mars for billions of years, but on Earth it’s just gone—there’s nothing older than about 50,000 years,” said Kirsten Siebach, a planetary scientist at Rice University in Houston who was not involved in the study. “The abundance of amorphous materials is one of the big mysteries from the Curiosity mission.”

Thinking Outside the Black Box

Amorphous materials can form when magma cools very quickly, when impactors slam into the surface, or through chemical reactions between rocks and water. Curiosity’s Sample Analysis at Mars instrument found relatively high concentrations of water, carbon dioxide, and other volatile compounds in Gale Crater’s amorphous materials, which wouldn’t be present in material formed in the kind of high-temperature environments expected during an impact or in a volcanic setting. That left chemical reactions as the most likely process.

To better understand that process in Gale Crater, the researchers wanted to compare the Curiosity samples with amorphous materials on Earth, which wasn’t an easy task. “Amorphous materials haven’t been studied much in a terrestrial setting,” Feldman said. “They’ve always been a sort of black box—we know they’re there, but we don’t know much about them.”

The team identified sites in California, Nevada, and Newfoundland that have soils with chemistry similar to Gale Crater’s amorphous materials, which have high concentrations of iron and silica but relatively low abundances of aluminum. These terrestrial sites have different climates, allowing the scientists to compare the influence of both temperature and precipitation on the formation of amorphous materials.

Soils in the Tablelands region of Newfoundland provided the best match to the amorphous materials in Gale Crater. The region is cold and wet, suggesting that the Martian materials formed under similar environmental conditions. Credit: Anthony Feldman/DRI

The California site was in the Klamath Mountains in the northwestern part of the state, which has cold, wet winters and warm, dry summers. In Nevada, the team sampled a hot desert site near the one-time mining camp of Pickhandle Gulch, close to the California border. And in Newfoundland, they visited Tablelands in Gros Morne National Park, which has a subarctic climate.

The scientists tested the samples using X-ray diffraction spectroscopy, transmission electron microscopy, and other techniques. The analyses revealed that the amorphous materials in Newfoundland, most of which are about 15,000–20,000 years old, were the best match to those in Gale Crater. Tablelands has a mean annual temperature of 3.9°C and receives about 120 centimeters of precipitation each year, suggesting the Martian samples formed from interactions between rocks and water at near-freezing temperatures.

“We’re speculating that iron- and silicon-rich materials formed from surface and groundwater alteration of iron-bearing silicates at low temperatures,” said coauthor Elizabeth Rampe, a planetary scientist at NASA’s Johnson Space Center. The cold then preserved these materials for billions of years.

“Cold makes a lot of sense because low temperatures slow down chemical reactions,” Siebach said. “High temperatures would provide the energy for the materials to crystallize. But if it’s cold, it takes longer.”

A Question of Habitability

“This is all super important for our understanding of habitability and habitable environments on Mars,” Rampe said, including the suitability of a location for the development of life versus sustaining life as conditions change.

Early Gale Crater sediments were deposited in water with low salinity and acidity, Rampe said, perhaps providing a reasonably comfortable environment for the formation of life. Over hundreds of millions of years, however, the water became more caustic. “That might not be the best place for life to develop, but there are microbes on Earth that live in those kinds of environments today,” Rampe said. “So if microbes on Mars evolved to live in these fluids, then, technically, [Gale Crater] was habitable, but maybe not the most comfortable place.”

The Perseverance rover, which is trundling across Jezero crater, isn’t equipped with the same X-ray instrument that Curiosity has, so it can’t quantify any possible amorphous materials. It continues to cache samples for possible return to Earth, however, where laboratory analysis would provide more detail on the Martian climate. “I’d love to get my hands on some of those samples,” Feldman said.

This article originally appeared on Eos Magazine.

share Share

This Sensor Box Can Detect Deadly Bird Flu in 5 Minutes. But It Won't Stop the Current Outbreak

The biosensor can detect viral airborne particles.

In 2013, dolphins in Florida starved. Now, we know why

The culprit is a very familiar one. It's us.

Researchers can't rule out the possibility of life existing on Titan

It wouldn't be very much, but it's exciting anyway.

The Earth's oceans were once green. Then, cyanobacteria and iron came in

A pale green dot?

Could man's best friend be an environmental foe?

Even good boys and girls can disrupt wildlife in ways you never expected.

Musk's DOGE Fires Federal Office That Regulates Tesla's Self-Driving Cars

Mass firings hit regulators overseeing self-driving cars. How convenient.

Archaeologists Just Found a Stunning Teotihuacan Altar Hidden in a Maya City. Its Murals Tell a Shocking Story

What were these outsiders doing so far away from home?

These Strange-Looking Urinals Could Finally Stop Pee From Splashing Back on You

The humble urinal gets a much needed high-tech update after 100 years.

Archaeologists Unearth 150 Skeletons Beneath Vienna From 2,000-Year-Old Roman-Germanic Battlefield

A forgotten battle near the Danube reveals clues about Vienna's inception.

An AI Called Dreamer Learned to Mine Diamonds in Minecraft — Without Being Taught

A self-improving algorithm masters a complex game task, hinting at a new era in AI.