homehome Home chatchat Notifications


Coldest chemical reaction reveals intermediate molecules in slow motion

Scientists have used a complex setup that allowed them to image intermediate chemical compounds that typically last only a thousandth a billionth of a second.

Tibi Puiu
December 3, 2019 @ 10:30 pm

share Share

When you chill things close to absolute zero, everything slows down to the point that even the vibration of atoms can come to a grinding halt. This is what researchers at Harvard achieved during an experiment in which they’ve generated the slowest chemical reaction yet. This allowed them to buy enough time to image intermediate chemical compounds that would have otherwise assembled into something else too fast for even our most advanced instruments to follow.

The coldest bonds in the history of molecular chemistry

A diagram showing the transformation of potassium-rubidium molecules (left) into potassium and rubidium molecules (right). Normally the intermediate (middle) step occurs too fast to see but new tech demonstrated by Harvard researchers managed to capture it for the first time. Credit: Ming-Guang Hu.

Absolute zero — the coldest possible temperature — is set at -273.15 °C or -459.67 °F. In experiments closer to room temperature, chemical reactions tend to slow down as the temperature decreases. As you cross into the ultra-cold realm, you’d expect no chemistry at all to happen — but that’s just not true.

Researchers at Harvard University chilled a gas made of potassium and rubidium atoms to just 500 nanoKelvin. For reference, this is millions of times colder than interstellar space.

Even at such frigid temperature, atoms and molecules still react — and they do so slowly enough for scientists to see everything. When the potassium and rubidium molecules interacted, researchers were able to image for the first time the four-atom molecule that was created in an intermediate step.

At room temperature, chemical reactions occur in just a thousandth of a billionth of a second. Previously, scientists used ultrafast lasers like fast-action cameras to snap images of the reactions as they occur. However, because the reaction time is so fast, this method cannot image the many intermediate steps involved in a typical chemical reaction.

“Most of the time,” said Ming-Guang Hu, a post-doc researcher at the department of chemistry and chemical biology at Harvard University and first author of the new study. “you just see that the reactants disappear and the products appear in a time that you can measure. There was no direct measurement of what actually happened in the middle.” 

In the future, scientists will be able to use a similar method to study other chemical reactions in minute detail. Observations aside, such a technique may also enable researchers to tamper with chemical reactions in a more controlled manner, with potential applications in the pharmaceutical, energy, and household product industries.

The findings were reported in the journal Science.

share Share

Oxford Academics Used a Human Skull as a Wine Cup—Until 2015

It sounds like a scene from gothic fiction, but it’s real.

This Planet Is So Close to Its Star It Is Literally Falling Apart, Leaving a Comet-like Tail of Dust in Space

This dying planet sheds a “Mount Everest” of rock each day.

Scientists Just Found the Clearest Evidence Yet That Lucid Dreaming Is a Real State of Consciousness

People who are aware they are dreaming show distinct brain patterns.

Drug Regenerates Retina and Restores Vision in Blind Mice

A protein hidden in our eyes may be the reason we can't repair lost vison.

This Stretchy Battery Still Works After Being Twisted, Punctured, and Cut in Half

Not the most energy dense but its ability to withstand abuse is unparalleled.

Yeast in Space? Scientists Just Launched a Tiny Lab to See If We Can Create Food in Orbit

Microbes can brew food in space — a game-changer for astronauts.

The UAE Wants AI to Write Its Laws — What Could Possibly Go Wrong?

But can machines really grasp justice, fairness, and human rights?

Scientists Invent a Color Humans Have Never Seen Before

Meet "olo": a vivid, hyper-saturated blue-green that can't be captured by screens or paint.

This Chewing Gum Can Destroy 95 Percent of Flu and Herpes Viruses

Viruses had enough fun in our mouths, it's time to wipe them out.

Conservative people in the US distrust science way more broadly than previously thought

Even chemistry gets side-eye now. Trust in science is crumbling across America's ideology.