homehome Home chatchat Notifications


How to blow the perfect soap bubbles, explained by science

A favorite childhood pastime, now decoded.

Tibi Puiu
September 4, 2018 @ 12:14 am

share Share

Physicists have unpacked the physics behind one of childhood’s favorite pastimes: blowing soap bubbles. Their experiments have revealed what’s the perfect size for a circular wand and the optimal wind speed required to blow bubbles that don’t pop. And while this may sound like a trivial study worthy of an Ig Nobel Prize, the study might actually help manufacturers make better sprays, foams, emulsions, and basically anything that has bubbles in it.

Credit: Pixabay.

Credit: Pixabay.

Studying bubbles has actually been a century-long intellectual pursuit that has helped scientists gain valuable physical and mathematical insights. For instance, a soap bubble is a perfect example of surface tension in action. It’s because of surface tension that bubbles are round — it’s this shape that determines a minimal surface area for a given volume and, hence, requires the least amount of energy to maintain. And it’s thanks to soap bubbles that some complex mathematical problems have been solved with real-world applications following not long after. For instance, equations that describe soap bubble formation have helped architects design roofs whose shape look impossible but are stable nonetheless. The Olympic Stadium in Munich is an illustrating example.

Tensile structures like the one at the Olympic Stadium in Munich were discovered with the help of soap bubbles. Image via Wiki Commons.

Most recently, researchers at New York University (NYU) devised a series of experiments to help them blow the perfect bubble we’ve been chasing since we were kids. These revealed that, essentially, there are only two ways in which bubbles can be made: one is by blowing a strong, steady wind on a soap film, the other is by pushing with a gentle wind in an already inflated film to raise its volume.

“This second method might explain how we often blow bubbles as kids: a quick puff bends the film outward and thereafter the film keeps growing even as the flow of air slows,” said Leif Ristroph, an assistant professor at NYU’s Courant Institute of Mathematical Sciences who led the study, in a a statement.

The first method, on the other hand, is less widely used.

“This is used by the bubble blowers we see in parks in the summertime,” explained Ristroph. “They simply walk, sufficiently fast, it seems, with a soapy loop of rope, which provides the relative wind needed to stretch out the film.”

Blowing bubbles is essentially a question of how a liquid film interacts with an imposed flow of an external fluid, in this case, air. However, for their experiments, the researchers used oil films suspended in flowing water and pushed through a wire loop wand. Using water instead of air allowed the researchers to control, measure, and observe the flows more accurately. What’s more, the observations matched the theoretical predictions for the film’s shape.

So, if you’d like to make perfect bubbles, according to this study you’d better find a wand with a 1.5-inch perimeter and gently blow at a consistent velocity of 6.9 cm/s. Any faster or slower, and the bubble will eventually burst; the same goes for the wand if it’s smaller or larger. On to you!

The findings appeared in the journal Physical Review Letters.

share Share

Your gut has a secret weapon against 'forever chemicals': microbes

Our bodies have some surprising allies sometimes.

High IQ People Are Strikingly Better at Forecasting the Future

New study shows intelligence shapes our ability to forecast life events accurately.

Cheese Before Bed Might Actually Be Giving You Nightmares

Eating dairy or sweets late at night may fuel disturbing dreams, new study finds.

Scientists Ranked the Most Hydrating Drinks and Water Didn't Win

Milk is more hydrating than water. Here's why.

Methane Leaks from Fossil Fuels Hit Record Highs. And We're Still Looking the Other Way

Powerful leaks, patchy action, and untapped fixes keep methane near record highs in 2024.

Astronomers Found a Star That Exploded Twice Before Dying

A rare double explosion in space may rewrite supernova science.

This Enzyme-Infused Concrete Could Turn Buildings into CO2 Sponges

A new study offers a greener path for concrete, the world’s dirtiest building material.

AI Helped Decode a 3,000-Year-Old Babylonian Hymn That Describes a City More Welcoming Than You’d Expect

Rediscovered text reveals daily life and ideals of ancient Babylon.

Peeling Tape Creates Microlightning Strong Enough To Power Chemistry

Microlightning from everyday tape may unlock cleaner ways to drive chemical reactions.

Menstrual Cups Passed a Brutal Space Test. They Could Finally Fix a Major Problem for Many Astronauts

Reusable menstrual cups pass first test in space-like flight conditions.