homehome Home chatchat Notifications


Blood-repelling surface might finally put an end to clotting in medical implants

The resulting material could spare thousands from having to deal with blood clots.

Dragos Mitrica
January 23, 2017 @ 5:40 pm

share Share

Blood, plasma and water droplets beading on a superomniphobic surface. Colorado State University researchers have created a titanium surface that's specifically designed to repel blood. (Credit: Kota Lab / Colorado State University)

Blood, plasma and water droplets beading on a superomniphobic surface. Colorado State University researchers have created a titanium surface that’s specifically designed to repel blood. (Credit: Kota Lab / Colorado State University)

Medical implant designers have always found it challenging to make their prostheses both biocompatible and safe from blood clotting. The solution might have been found at the interface between material science and biomedical engineering as Colorado State University engineers recently demonstrated. A team there designed a “superhemophobic” titanium surface that’s extremely repellent to blood. Tests ran in the lab suggest that blood would stay clear of an implant coated with this surface averting clots and infection that usually require doctors to perform surgery again.

Arun Kota and Ketul Popat, both from Colorado State University’s mechanical engineering and biomedical engineering departments, combined their expertise in an effort to design a surface that repels blood. Kota is an expert in superomniphobic materials (the kind that can repel virtually any liquid) while Popat’s work has been focused on tissue engineering and bio-compatible materials.

The two had to venture through unexplored terrain, as the typical approach has so far been the opposite. Medical implant engineers usually design “philic” surfaces that attract, not repel, blood so these are more biocompatible.

“What we are doing is the exact opposite,” Kota said. “We are taking a material that blood hates to come in contact with, in order to make it compatible with blood.”

That may sound confusing but the finished piece performed as intended. The researchers started with plain sheets of titanium whose surfaces they chemically altered to create a ‘phobic’ geometry onto which blood can’t come in contact with. It’s akin to how the lotus leaf repels water thanks to its nanoscale texture, only Kota and Popat’s surface was specially designed to repel blood. Experiments suggest very low levels of platelet adhesion, the biological process that eventually can lead to blood clotting and even biological rejection of the foreign material.

What the titanium's chemically altered surface looks like. The 'spikes' repel the blood. Credit: Colorado State Uni.

What the titanium’s chemically altered surface looks like. These ‘spikes’ repel the blood. Credit: Colorado State Uni.

Because the blood is ‘tricked’ that there is no surface blocking its flow, for all intents and purposes there is no foreign material.

“The reason blood clots is because it finds cells in the blood to go to and attach,” Popat said.

“Normally, blood flows in vessels. If we can design materials where blood barely contacts the surface, there is virtually no chance of clotting, which is a coordinated set of events. Here, we’re targeting the prevention of the first set of events.”

Next on the drawing board is to test new textures and chemistries. So far, fluorinated nanotubes seem to offer the best protection against clotting. Other clotting factors will also be examined and hopefully the Colorado State team may soon have the chance to test their work with real medical devices.

The findings were reported in the Advanced Healthcare Materials journal.

share Share

Drones Helps Researchers Uncover a Lost Mega-Fortress in Georgia

Researchers have long known about the formidable scale of the Dmanisis Gora fortress, but a recent study has unveiled its true magnitude. Using drone-based imagery and photogrammetry, a team of scientists has revealed that this 3,000-year-old structure in the Caucasus Mountains spans an astonishing 60 to 80 hectares. A cultural crossroads The South Caucasus is […]

Eating more peanuts, herbs, and spices can boost your gut microbiome

A small change in diets can make a big difference for your health.

Did your rent just surge? Blame this price-fixing AI landlord costing Americans $3.6 billion annually

AI is changing the housing market and renters are paying the price.

Melting Antarctic Ice Could Awaken 100 Hidden Volcanoes

As ice recedes, hidden volcanoes under Antarctica awaken, reshaping predictions for climate change.

This Hornet Can Drink 80% Alcohol Without Ever Getting Drunk and Scientists Finally Know Why

Oriental hornets never get intoxicated with alcohol no matter how strong the alcohol or how long they drink.

200 Jurassic-era dinosaur footprints unearthed on UK’s largest dinosaur highway

Thanks to a storm, these dinosaur footprints managed to remain preserved for 166 million years.

The Soviets sent most of its intellectuals to remote gulags. Decades later, those areas became more prosperous

A new study reveals that regions near Soviet GULAG camps are more prosperous today, thanks to the unintended legacy of intellectual capital of educated prisoners

Strange Painted Penis Bone Found in England Reveals Rituals From Roman Britain

An enigmatic artifact suggests ancient rituals tied to fertility and agricultural cycles.

Tiny Surfers: How Bats Use Warm Air Waves for Epic Migrations

The discovery that bats synchronize their migrations with storm fronts provides critical insights into their survival strategies.

Does taking part in Veganuary put people off meat in the long term? Here’s what the evidence shows

With millions participating annually, Veganuary is more than just a trend—it’s transforming attitudes towards meat.