homehome Home chatchat Notifications


Biocompatible 'bandage' heals severely broken bones

The bandage can stick to a fracture like a plaster, accelerating natural healing.

Tibi Puiu
September 21, 2020 @ 6:40 pm

share Share

Credit: Pixabay.

Researchers in the UK have devised a bandage-like biomaterial that transplants stem cells into severe bone fractures. The easily applied bandage significantly speeds up the healing process, improves recovery, and reduces the risk of infections and poor outcomes for very serious injuries.

The biomaterial developed at King’s College London simulates structures that are part of healthy human bones. The bandage can then be stuck to a fracture like a plaster, amplifying the natural healing process.

In order to speed up bone healing, the bandage is coated in a protein involved throughout the body in the growth and repair of tissue. Additionally, the material grows bone cells from stem cells in a 3-D gel embedded in the bandage. When the bandage is patched to a fracture, these bone cells are transplanted to the site of injury.

Most broken bones do not require intensive medical care. Typically, doctors will put a broken arm or leg into a cast. The cast doesn’t heal broken bones on their own, but rather hold the affected area in place so the bone heals naturally and straight.

In particularly severe fractures, surgery is often necessary. Sometimes, doctors will insert metal pins and other implants to hold everything in place while the bone heals. Other times, instead of synthetic implants, bone is taken from elsewhere in the body for transplant at the site of injury.

However, following a serious injury, the body’s ability to heal is weakened. This is particularly true for the elderly.

This is why a ‘bone-like bandage’ is appealing: it supports and accelerates the healing of bone fractures without the need for synthetic implants. It is also biocompatible and safe as the researchers designed it to specifically target fracture sites, so it does not leak to healthy tissue.

“Our technology is the first to engineer a bone-like tissue from human bone stem cells in the lab within one week, and successfully transplant it in the bone defect to initiate and accelerate bone repair. The concept of the 3D-engineered tissue and the bandage has the potential to be developed to different injured tissues and organs,” first author Dr. Shukry Habib, from King’s College London, said in a statement.

The findings were reported in the journal Nature Materials.

share Share

The World's Tiniest Pacemaker is Smaller Than a Grain of Rice. It's Injected with a Syringe and Works using Light

This new pacemaker is so small doctors could inject it directly into your heart.

Scientists Just Made Cement 17x Tougher — By Looking at Seashells

Cement is a carbon monster — but scientists are taking a cue from seashells to make it tougher, safer, and greener.

Three Secret Russian Satellites Moved Strangely in Orbit and Then Dropped an Unidentified Object

We may be witnessing a glimpse into space warfare.

Researchers Say They’ve Solved One of the Most Annoying Flaws in AI Art

A new method that could finally fix the bizarre distortions in AI-generated images when they're anything but square.

The small town in Germany where both the car and the bicycle were invented

In the quiet German town of Mannheim, two radical inventions—the bicycle and the automobile—took their first wobbly rides and forever changed how the world moves.

Scientists Created a Chymeric Mouse Using Billion-Year-Old Genes That Predate Animals

A mouse was born using prehistoric genes and the results could transform regenerative medicine.

Americans Will Spend 6.5 Billion Hours on Filing Taxes This Year and It’s Costing Them Big

The hidden cost of filing taxes is worse than you think.

Underwater Tool Use: These Rainbow-Colored Fish Smash Shells With Rocks

Wrasse fish crack open shells with rocks in behavior once thought exclusive to mammals and birds.

This strange rock on Mars is forcing us to rethink the Red Planet’s history

A strange rock covered in tiny spheres may hold secrets to Mars’ watery — or fiery — past.

Scientists Found a 380-Million-Year-Old Trick in Velvet Worm Slime That Could Lead To Recyclable Bioplastic

Velvet worm slime could offer a solution to our plastic waste problem.