homehome Home chatchat Notifications


Artificial intelligence is just as good at spotting skin cancer as doctors. Could be turned into an app

This machine could save thousands of lives.

Tibi Puiu
January 27, 2017 @ 5:26 pm

share Share

skin cancer

Credit: WebMD.

A team from Stanford trained an AI to spot telltale signs of cancer and the machine proved to be just as effective at spotting melanoma as a human oncologist.

A trained eye that never gets tired and always devotes its full attention, pixel by pixel

Skin cancer is one of the most common types of cancer with 5.4 million new cases diagnosed each year in the United States alone. Luckily, it is also one of the easiest to treat as patients can expect a 97 percent five-year survival rate, provided you spot it early. If the diagnose comes after the disease is in its later stage, the survival rate plummets to 14 percent.

This is why having a machine able to diagnose skin cancer is so exciting. People worried they might have cancer could simply upload pics of suspicious body parts like moles or rashes through an app, then the AI would quickly tell them if there’s something to worry about. The patients can then seek professional counseling from a human doctor that can have the final world. This pre-diagnosing stage is very important and a lot of people miss an appointment with a doctor because it’s a hassle or they’re scared. Just snapping a pic and uploading it literally takes 10 seconds, though.

“We realized it was feasible, not just to do something well, but as well as a human dermatologist,” said Sebastian Thrun, an adjunct professor in the Stanford Artificial Intelligence Laboratory. “That’s when our thinking changed. That’s when we said, ‘Look, this is not just a class project for students, this is an opportunity to do something great for humanity.’”

Stanford researchers based their AI an existing deep learning algorithm, known as a neural network, from Google used for image classification. We previously wrote in great detail how this neural network learns, responds, and classifies information akin to neural networks in the human brain.

Google’s neural network was primed to tell objects from photos apart, a dog from a cat for instance. Thrun and colleagues, however, needed to a machine that could know a malignant carcinoma from a benign seborrheic keratosis.

For this particular purpose, the AI was trained with 130,000 images of moles, rashes, and lesions which represented over 2,000 different diseases. Some of these features were benign while others belonged to people diagnosed with skin cancer. When the AI was deemed ready, it was tested against 21 human dermatologists. Tests suggest the machine, which scanned each picture pixel by pixel, performed on par with humans, being at least 91 percent as accurate. For instance, the dermatologists could identify 95 percent of the malignant lesions and 76 percent of the benign ones. The AI was correct 96 percent of the time for malignant moles and 90 percent of the time for harmless lesions, as reported in Nature

“There’s no huge dataset of skin cancer that we can just train our algorithms on, so we had to make our own,” Brett Kuprel, a co-author of the paper said in a Stanford University blog poston the topic. “We gathered images from the internet and worked with the medical school to create a nice taxonomy out of data that was very messy — the labels alone were in several languages, including German, Arabic and Latin.”

The researchers stress that their machine is by no means meant to replace dermatologists. Rather, the algorithm is meant to assist diagnosis by making the process far more easier for patients. It never hurts to have a second opinion either and a machine that’s never tired or moody could mean a lot in this respect.

“Advances in computer-aided classification of benign versus malignant skin lesions could greatly assist dermatologists in improved diagnosis for challenging lesions and provide better management options for patients,” said Susan Swetter, professor of dermatology and director of the Pigmented Lesion and Melanoma Program at the Stanford Cancer Institute, and co-author of the paper. “However, rigorous prospective validation of the algorithm is necessary before it can be implemented in clinical practice, by practitioners and patients alike.”

share Share

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.

Worms and Dogs Thrive in Chernobyl’s Radioactive Zone — and Scientists are Intrigued

In the Chernobyl Exclusion Zone, worms show no genetic damage despite living in highly radioactive soil, and free-ranging dogs persist despite contamination.