homehome Home chatchat Notifications


Scientists make most precise measurements of antimatter -- but only deepen mystery

Hydrogen and anti-hydrogen are unremarkably the same.

Tibi Puiu
April 4, 2018 @ 11:22 pm

share Share

Credit: The Reality Files.

Credit: The Reality Files.

Antimatter is, you’ve guessed it, the opposite of matter. When the two meet, they annihilate each other. According to the Big Bang theory, at the ‘T zero’, equal amounts of matter and antimatter were created in the early universe. But today, everything we see from the smallest life forms on Earth to the largest stellar objects is made almost entirely of matter. Why hasn’t all that early matter and antimatter annihilated each other, leaving behind a void as large as the universe itself?

While attempting to answer this very important scientific question, researchers found themselves opening a bigger, more philosophical one. Researchers part of the ALPHA collaboration at the European Organization for Nuclear Research (CERN) performed the most precise measurement of antihydrogen yet, looking for even the slightest differences from hydrogen that might explain the matter-antimatter disparity.

The researchers had to mix 90,000 antiprotons with 3 million positrons (electron anti-matter) to produce 50,000 antihydrogen atoms. The resulting antihydrogen atoms are held in a magnetic trap to prevent them from coming into contact with matter and self-annihilating.

The team led by Jeffrey Hangst, a physicist at Aarhus University in Denmark, studied the anti-matter by analyzing its reaction when it was probed with laser light. Atoms from different types of matter absorb different frequencies of light, and according to one prevailing theory, hydrogen and anti-hydrogen should absorb the same frequencies of light.

According to the latest measurements, the two types of matter indeed seem to absorb the same frequencies. The two types of measurements agreed with a precision of 2 parts per trillion, which marks a 100-fold improvement over the previous research.

Unfortunately, despite the impressive science involved, the new study doesn’t tell us anything more than we already knew. However, Ulmer says that perhaps a deviation at an even greater level of precision could have tipped the scale, which is why he and his team is shooting for even better precision for the next experiment.

“Although the precision still falls short for that of ordinary hydrogen, the rapid progress made by ALPHA suggests hydrogen-like precision in antihydrogen (measurements)… are now within reach,” said Hangst in a statement.

Scientific reference: M. Ahmadi et al. Characterization of the 1S–2S transition in antihydrogen, Nature (2018). DOI: 10.1038/s41586-018-0017-2. 

share Share

NASA Astronaut Snaps Rare Sprite Flash From Space and It’s Blowing Minds

A sudden burst of red light flickered above a thunderstorm, and for a brief moment, Earth’s upper atmosphere revealed one of its most elusive secrets. From 250 miles above the surface, aboard the International Space Station, astronaut Nichole “Vapor” Ayers looked out her window in the early hours of July 3 and saw it: a […]

Deadly Heatwave Killed 2,300 in Europe, and 1,500 of those were due to climate change

How hot is too hot to survive in a city?

You're not imagining it, Mondays really are bad for your health

We've turned a social construct into a health problem.

These fig trees absorb CO2 from the air and convert it into stone

This sounds like science fiction, but the real magic lies underground

Koalas Spend Just 10 Minutes a Day on the Ground and That’s When Most Die

Koalas spend 99% of their lives in trees but the other 1% is deadly.

Lost Pirate Treasure Worth Over $138M Uncovered Off Madagascar Coast

Gold, diamonds, and emeralds -- it was a stunning pirate haul.

These Wild Tomatoes Are Reversing Millions of Years of Evolution

Galápagos tomatoes resurrect ancient defenses, challenging assumptions about evolution's one-way path.

Earth Is Spinning Faster Than Usual. Scientists Aren’t Sure Why

Shorter days ahead as Earth's rotation speeds up unexpectedly.

The Sound of the Big Bang Might Be Telling Us Our Galaxy Lives in a Billion-Light-Year-Wide Cosmic Hole

Controversial model posits Earth and our galaxy may reside in a supervoid.

What did ancient Rome smell like? Fish, Raw Sewage, and Sometimes Perfume

Turns out, Ancient Rome was pretty rancid.