homehome Home chatchat Notifications


How algae prepared the ground for complex life 650 million years ago

The story of the rise of the algae.

Tibi Puiu
August 17, 2017 @ 11:21 pm

share Share

Credit: Pixabay.

Credit: Pixabay.

Algae look boring and smell awful, but really, life on Earth would never be the same without them. Rich in iodine and several other important minerals, algae provide an essential food source whose nutrients migrate from the very bottom to the top of the food chain. Never were algae more important than 650 million years ago, though. Oddly enough, these simple life forms were some of the most complex at the time, surrounded by an ocean of single-celled bacteria. In a new paper, scientists argue that around that time algae population jumped a hundred to even a thousand fold. Ultimately, this planetary algae bloom set the stage for the most critical turning point in life’s history: the Cambrian explosion.

Food for thought

Life on Earth was pretty dull until the Cambrian explosion, but it was never dull after it. As Andrei eloquently put it:

The Cambrian is the time when most of the major groups of animals first appear in the fossil record. This event is sometimes called the “Cambrian Explosion,” because of the relatively short time over which this diversity of forms appears. It was a period of evolutionary experimentation; animals with complex body plans evolved walking, swimming, crawling and burrowing. Numerous diverse creatures appeared, including Anomalocaris (a 1-meter predator with moving lobes on the side of its body and 2 arm-like features next to its mouth), Diania (spiny animals with 10 pairs of legs) and the more famous trilobites.

This remarkable turn of events, however, couldn’t have come out of nowhere. Every explosion has a fuse, Jochen Brocks, a researcher at the Australian National University, has a hunch algae had a eukaryotic hand in all of this.

Mushy algae, of course, leave no fossil traces but what Brocks and colleagues found where molecular remnants of their cell walls, which are closely related to the cholesterol found in our blood. This makes them very stable and when ancient algae decomposed, these fat molecules were absorbed by sediments where they remained trapped for eons.

The rise of the algae

About 700 million years ago, runaways glaciers covered the entire planet in ice. Credit: NASA.

About 700 million years ago, runaways glaciers covered the entire planet in ice. Credit: NASA.

By painstakingly analyzing the molecular signal and separating fossil fuel contaminants, the team found algae populations rose dramatically around 650 million years ago. In a geological timeframe, this bloom happened right after the ‘Snowball Earth’ — a time when the planet became almost entirely engulfed in ice and snow. The equator, one of the hottest latitudes today, had average temperatures of around -20°C (-10°F), roughly similar to present Antarctica.

This white hell ended after about 50 million years when volcanic CO2 build-up heated the atmosphere enough to bring temperatures back into sensible limits, as far as life is concerned. Brocks believes that this massive shift grounded rocks, causing them to release phosphate — an essential nutrient and common fertilizer used in agriculture. This was the food that would explain the planetary algae bloom and the algae, in turn, would provide the food for the first animals, simple sponges.

Of course, this is quasi-speculating — it’s still the best explanation we have for why life took so long to make the big step from dull unicellular organisms to a more complex and diverse biosphere which would ultimately lead to humanity’s evolution. Consider algae had been around for more than a billion years before this ‘great boom’. The rebound after the Snowball Earth seems like the kick in the hide that life needed.

“We could not have made our discovery in any more exciting period,” Brocks wrote. “The close temporal connection between the melting of the Snowball, rising nutrient levels in the oceans, the rise of algae and the evolution of animals immediately suggest that these events must be linked.”

Findings appeared in the journal Nature.

share Share

A 97-Year-Old Tortoise Just Became a First-Time Mom at the Philadelphia Zoo

Mommy has been living at the Philadelphia Zoo for 90 years, and waited until old age to experience motherhood.

Earth Might Run Out of Room for Satellites by 2100 Because of Greenhouse Gases

Satellite highways may break down due to greenhouse gases in the uppermost layers of the atmosphere.

Federal Workers Say They’re Being Watched by AI for Saying Anything Bad about Trump or Musk

AI monitors federal workers for ‘anti-Trump’ and 'anti-Musk' language as oversight erodes, insiders say.

The World’s Smallest Flying Robot Is Here. It Weighs Less Than a Raindrop and It’s Powered by Invisible Forces

The world’s lightest untethered flying robot takes to the air.

Pulse Oximeters Seem To Be Misreading Oxygen in Darker Skin

Bias in pulse oximeters isn't just a clinical glitch — it’s a systemic issue that puts patients with darker skin at risk.

Birds Are Changing Color in Cities. Here’s Why

Birds in cities are getting flashier — literally.

This Is How Autocrats Quietly Take Over and What You Can Do About It

We can't rely on just the courts. Reversing political backsliding needs the people's voices.

Women With Endometriosis Say Cutting These 4 Foods Eased Their Pain

A new study reveals that eliminating foods like alcohol, gluten, and dairy may offer real relief where medicine often falls short.

Economists forecast the full impact of Trump's 'Liberation Day' tariffs. The US is hit the hardest

Modelling of how Trump’s tariffs will hit global trade suggests the US will be the biggest loser – while a few nations may emerge as surprising winners.

“Thirstwaves” Are Growing More Common Across the United States

Like heat waves, these periods of high atmospheric demand for water can damage crops and ecosystems and increase pressure on water resources. New research shows they’re becoming more severe.