homehome Home chatchat Notifications


AI scans your brain and draws what you see

This is an entire new level of mind reading.

Tibi Puiu
November 4, 2019 @ 6:27 pm

share Share

Paired images of what a test subject observed and what a brain-computer interface generated based on brain activity. Credit: Grigory Rashkov.

Russian researchers have used a non-invasive technique that visualizes the brain activity of a person, recreating surprisingly accurate moving images of what our eyes actually see. The method could someday be employed in cognitive disorder treatment or post-stroke rehabilitation devices that are controlled by a patient’s thoughts.

This is not the first time that scientists have decoded people’s brain activity patterns to generate images. Such methods, however, typically rely on functional MRI or surgically implanted neurons, which can be invasive and cumbersome, thereby limiting the potential for everyday applications.

The new technique developed by researchers at the Moscow Institute of Physics and Technology and Russian corporation Neurobotics is much more versatile. It relies on electroencephalography, or EEG, which records brain waves via electrodes that are placed noninvasively on the scalp.

“The electroencephalogram is a collection of brain signals recorded from scalp. Researchers used to think that studying brain processes via EEG is like figuring out the internal structure of a steam engine by analyzing the smoke left behind by a steam train,” explained paper co-author Grigory Rashkov, a junior researcher at MIPT and a programmer at Neurobotics. “We did not expect that it contains sufficient information to even partially reconstruct an image observed by a person. Yet it turned out to be quite possible.”

During one experiment, healthy volunteers had to watch 20 minutes of 10-second YouTube video fragments. The videos were grouped into five categories: abstract shapes, waterfalls, human faces, moving mechanisms, and motorsports.

Schematic of the brain-computer interface system developed by the Russian researchers. Credit: Anatoly Bobe/Neurobotics.

In the first phase of the experiment, the researchers showed that by analyzing the EEG data, they could distinguish between each video category.

For the second part, the researchers developed two neural networks (AI algorithms) and selected three random categories from the original five. One network was responsible for generating random category-specific images from “noise”, whereas the other generated similar “noise” from the EEG data. The two networks then operated together to convert the EEG signal, literally the brain activity, into actual images that mimic what the test subjects were actually observing.

Finally, after the neural networks were trained, the test subjects were shown completely novel videos that they had never seen from the same categories. As they watched the videos, the recorded brain activity was fed into the neural networks. The generated images could be easily categorized with 90% accuracy.

“What’s more, we can use this as the basis for a brain-computer interface operating in real time. It’s fairly reassuring. Under present-day technology, the invasive neural interfaces envisioned by Elon Musk face the challenges of complex surgery and rapid deterioration due to natural processes — they oxidize and fail within several months. We hope we can eventually design more affordable neural interfaces that do not require implantation,” Rashkov said.

The findings were reported in the preprint server bioRxiv.

share Share

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.

Worms and Dogs Thrive in Chernobyl’s Radioactive Zone — and Scientists are Intrigued

In the Chernobyl Exclusion Zone, worms show no genetic damage despite living in highly radioactive soil, and free-ranging dogs persist despite contamination.