homehome Home chatchat Notifications


African scientists used CRISPR to edit bananas and make them more resilient to disease

A parasite is coming for our bananas -- but science is here to stop it.

Mihai Andrei
August 10, 2021 @ 6:42 pm

share Share

Bananas are under threat from disease and climate change. A genetic tool can help.

Bananas are one of the most important food crops in the world. They’re an essential source of food and income for illions of farmers in resource-poor countries, and the overall banana production worldwide surpasses 155 million tons a year. But bananas are under pressure.

All the cultivated banana varieties are susceptible to diseases — and Banana xanthomonas wilt (BXW) is particularly problematic. BXW is a bacterial disease that has emerged as one of the largest threats to bananas. Overall economic losses from the disease were estimated at US$ 2–8 billion over a decade.

While all crops have some pests, being pretty much clones doesn’t really help the case — bananas are commercially propagated through cuttings, which means that banana growers virtually clone the plants. This lack of genetic variety makes them doubly susceptible to pests and disease, and we’ve seen in the past that infections can wipe out entire cultivars of bananas (until the 1950s, the Gros Michel banana cultivar was dominant, and it was wiped out by an outbreak of the Panama disease; now, Cavendish bananas account for around half of the global production, but they too are vulnerable).

With this in mind, researchers from the International Institute of Tropical Agriculture (IITA) scientists in Kenya set out to use genetic modifications to produce more resilient bananas. They used CRISPR/Cas9, a precise but also relatively affordable gene-editing tool, a discovery that earned a Nobel Prize in 2020.

“Recent advances in CRISPR/Cas-based genome editing can accelerate banana improvement,” the researchers write in the study. “The availability of reference genome sequences and the CRISPR/Cas9-editing system has made it possible to develop disease-resistant banana by precisely editing the endogenous gene.”

They focused on a gene called downy mildew resistance 6 (DMR6), a gene that has previously been shown to be important for many plants in fighting disease. During pathogen infection, the expression of this gene works to reduce or suppress the plant’s immune function — so if the gene were to be switched off, the plant’s immune system could be turbocharged.

Rapid bioassay of the edited bananas. Image credits: Tripathi et al.

The plants edited with CRISPR showed increased resilience to the disease, in some cases by up to 66% more resilient. Other than the increased resilience, there seemed to be no differences.

“Growth trial of three replicates of the potted plants of all the edited events under the greenhouse conditions showed normal growth with no morphological differences,” the study reads.

However, the researchers note that the study needs to be replicated on a larger sample size and in more realistic soil conditions, as this study was carried out on potted plants.

With bananas under threat from multiple pathogens, approaches such as this one can make all the difference. It’s not just pathogens, either — climate change has also been shown to have a damaging effect on bananas.

The study was published in Plant Biotechnology Journal.

share Share

A Dutch 17-Year-Old Forgot His Native Language After Knee Surgery and Spoke Only English Even Though He Had Never Used It Outside School

He experienced foreign language syndrome for about 24 hours, and remembered every single detail of the incident even after recovery.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.

Westerners cheat AI agents while Japanese treat them with respect

Japan’s robots are redefining work, care, and education — with lessons for the world.

Scientists Turn to Smelly Frogs to Fight Superbugs: How Their Slime Might Be the Key to Our Next Antibiotics

Researchers engineer synthetic antibiotics from frog slime that kill deadly bacteria without harming humans.

This Popular Zero-Calorie Sugar Substitute May Be Making You Hungrier, Not Slimmer

Zero-calorie sweeteners might confuse the brain, especially in people with obesity

Any Kind of Exercise, At Any Age, Boosts Your Brain

Even light physical activity can sharpen memory and boost mood across all ages.

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

We Should Start Worrying About Space Piracy. Here's Why This Could be A Big Deal

“We are arguing that it’s already started," say experts.