ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Scientists levitate largest object yet with an acoustic tractor beam, might one day work for humans

From science fiction to reality.

Tibi PuiubyTibi Puiu
January 22, 2018
in News, Physics
A A
Share on FacebookShare on TwitterSubmit to Reddit

Tractor beams, not too long ago a staple of science fiction, have made the jump into reality. Previously, scientists used acoustic waves to make objects magically levitate — but only if these were very small. Now, a new breakthrough reported by British researchers opens the door for levitating much bigger objects, perhaps even humans one day.

Fooling gravity

There are a couple of ways to trap objects mid-air, essentially making them levitate. Maglev trains, for instance, literally float on train tracks thanks to powerful electromagnets. There also optic methods (lasers) and even thermal levitation that exploits a temperature difference to lift particles. However, scientists have found that using acoustic waves is more appealing since you can grab non-metals, be they liquid or solid — and the result can be quite breathtaking.

Acoustic Levitation
Credit: Youtube / Smarter Every Day.

The way acoustic levitation works is by blasting ultrasound waves from a transducer, which bounce off a reflector. The interaction between the bounced-off compressions creates a standing wave which shifts back and forth or vibrates in segments rather than traveling from place to place. Essentially, the standing wave cancels gravity and the object between the transducer and reflector appears to float.

Credit: Sonic Levitation.
Credit: Sonic Levitation.

The problem with acoustic levitation is that previous research had always found that the size of the object was limited to the size of the wavelength of sound used. But now University of Bristol researchers may have a way to overcome this limitation.

“Acoustic researchers had been frustrated by the size limit for years, so it’s satisfying to find a way to overcome it. I think it opens the door to many new applications,” Asier Marzo from Bristol’s Department of Mechanical Engineering, said in a statement.

Previously, when scientists tried to acoustically levitate larger objects, these became unstable and spun uncontrollably, instead of floating, until they ultimately were ejected like debris in a tornado. By lowering the frequency of the acoustic wave to audible ranges (below 20kHz), it’s possible to levitate larger objects since the wavelength increases. However, this can also become dangerous for humans whose ears would now be exposed to the lower pitches.

Writing in the Physical Review Letters, the researchers showed how rapidly fluctuating acoustic vortices – or ‘tornados of sound’ – can be controlled by changing the twisting direction of the vortices, thus stabilizing the tractor beam. Using this approach, the team fired ultrasonic waves at a pitch of 40kHz, allowing the tractor beam to suspend a 2cm polystyrene sphere in mid-air. That might not sound like a lot, but this is now the largest object ever levitated.

Besides being incredibly cool, applications include touchless control of drug capsules or micro-surgical implements inside the human body. Touchless control is particularly exciting since it means that now fragile objects can be assembled without touching them. What’s more, the researchers say they can use this method to levitate even larger objects, perhaps even humans.

RelatedPosts

No Content Available

“In the future, with more acoustic power it will be possible to hold even larger objects,” said senior research associate Mihai Caleap.

Tags: acoustic levitaion

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

No Content Available

Recent news

This car-sized “millipede” was built like a tank — and had the face to go with it

May 9, 2025

Climate Change Is Breaking the Insurance Industry

May 8, 2025

9 Environmental Stories That Don’t Get as Much Coverage as They Should

May 8, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.