homehome Home chatchat Notifications


Scientists create neural lace that fuses with your brain

In a world where in only a few decades we moved from clunky phones to wireless satellite-connected devices that allow you to be anywhere and do anything on the internet, it seems only normal that scientists will take it to the next level - to your brain. Already tested on mice, this fine mesh fits inside a syringe and unfurls on the brain to monitor its activity.

Mihai Andrei
June 17, 2015 @ 5:45 am

share Share

In a world where in only a few decades we went from clunky phones to wireless satellite-connected devices that allow us to be anywhere and do anything on the internet, it seems only normal that scientists will take it to the next level – to your brain. Already tested on mice, this fine mesh fits inside a syringe and unfurls on the brain to monitor its activity, creating a bio-technological interface which could revolutionize medicine.

The rolled electronic mesh is injected through a glass needle into a water-based solution. (Lieber Research Group, Harvard University)

A group of chemists and engineers who work with nanotechnology published a paper in Nature Nanotechnology where they describe a new ultra-fine mesh they’ve developed that merges with the brain and creates a machine-biological functionality. For now, the mice with this electronic mesh are connected by a wire to computer — but in the future, this connection could become wireless.

“We’re trying to blur the distinction between electronic circuits and neural circuits,” says Charles Lieber, a nanotechnologist at Harvard University and co-author of a study describing the device this week in Nature Nanotechnology.

Called “mesh electronics,” the device is so thin that it can be directly injected to the brain, where it attaches to the brain. The technology was already successfully tested on mice, who not only survived the implantation, but seem to have no negative side effects. This could have a lot of potential applications, including monitoring brain activity and delivering treatment for degenerative diseases such as Parkinson’s. It might even be used to artificially boost brain capacity.

A 3-D microscope image shows the mesh injected into a region of the brain called the lateral ventricle. (Lieber Research Group, Harvard University)

“This could make some inroads to a brain interface for consumers,” says Jacob Robinson, who develops technologies that interface with the brain at Rice University. “Plugging your computer into your brain becomes a lot more palatable if all you need to do is inject something.”

The mesh also gives scientists access to previously inaccessible areas of the brain; when researchers want to study some areas of the brain of a mouse, they have to actually cut a piece from it, but this technology might change that, allowing remote research. Further down the line, delivering treatment directly to the brain could be the way to go.

It might surprise you to learn that neural electronics are already a reality for some people. Patients suffering from severe epilepsy or tremors can find relief via electric shocks, which are delivered by long wires threaded deep into the brain. Also, quadriplegics have learned to control prosthetic limbs using chips embedded in the brain. But we’re still pretty far away from actually implementing the mesh in humans. For starters, researchers need to ensure a longer mesh lifespan. Previous neural meshes have suffered from stability problems either with the signal they output or their own structure. But the team is optimistic that this time, the mesh will blend in with the brain and quietly fit in the empty gaps.

“We have to walk before we can run, but we think we can really revolutionize our ability to interface with the brain,” says Lieber.

Journal Reference: Jia Liu, Tian-Ming Fu, Zengguang Cheng, Guosong Hong, Tao Zhou, Lihua Jin, Madhavi Duvvuri, Zhe Jiang, Peter Kruskal, Chong Xie, Zhigang Suo, Ying Fang & Charles M. Lieber. Syringe-injectable electronics. Nature Nanotechnology (2015) doi:10.1038/nnano.2015.115

share Share

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.

Worms and Dogs Thrive in Chernobyl’s Radioactive Zone — and Scientists are Intrigued

In the Chernobyl Exclusion Zone, worms show no genetic damage despite living in highly radioactive soil, and free-ranging dogs persist despite contamination.