homehome Home chatchat Notifications


NIH isolates new antibody which neutralizes 98% of HIV strains in lab trials

We're getting closer to a cure.

Alexandru Micu
November 17, 2016 @ 7:35 pm

share Share

An antibody produced by an HIV-positive patient has been found to neutralize 98 percent of all HIV strains it was pitted against, including most of those resistant to other antibodies of the same class.

Orange glass antibody. Image credits Upupa4me / Flickr.

Orange glass antibody.
Image credits Upupa4me / Flickr.

Antibodies are chemical compounds produced by the immune system to deal with pathogens such as bacteria or viruses. They function by binding to them to either neutralize or flag them for disposal by white blood cells. One of the biggest hurdles our bodies have to overcome in creating an efficient HIV antibody is the virus’ ability to rapidly adapt and overcome whatever is thrown at it. So these substances usually see a limited timeframe of efficiency against the virus, after which it morphs becoming untouchable again.

But a new antibody isolated by the US National Institutes of Health (NIH) called N6 has shown it can maintain its ability to recognize HIV even as the virus changes and breaks away from it. It is also an estimated 10 times more potent than VRC01, an antibody in the same class, which has passed to phase II clinical trials on human patients after protecting monkeys against the virus for six months.

“The discovery and characterisation of this antibody with exceptional breadth and potency against HIV provides an important new lead for the development of strategies to prevent and treat HIV infection,” said Anthony S. Fauci from the US National Institute of Allergy and Infectious Diseases.

N6 was tested on 181 different strains of HIV and destroyed 98% of the samples, including 16 out of 20 strains immune to other antibodies of its class. For comparison, VRC01 is only effective against 90% of HIV strains. N6 brings not only a wider scope but also much greater potency, the researchers report.

“Of those antibodies being considered for clinical development, there are examples of antibodies that are extremely broad but moderate in potency (e.g. 10E8 or VRC01) or extremely potent and less broad (e.g. PGT121 or PGDM1400).”

“However, the discovery of the N6 antibody demonstrates that this new VRC01-class antibody can mediate both extraordinary breadth and potency even against isolates traditionally resistant to antibodies in this class.”

One size fits all

To see what makes N6 so good at overcoming the shifting defenses of the virus, the team tracked its behavior over time as it interacted with HIV. They found the antibody targets bits of the virus which stay similar throughout different strains, not those which are prone to change — such as the V5 region. By binding to this area, N6 prevents the virus from infecting the host’s immune cells — which makes HIV-positive individuals’ defenses crumble, developing into AIDS, the acquired immune deficiency syndrome.

“N6 evolved such that its binding was relatively insensitive to the absence or loss of individual contacts typically found in the VRC01 class,” the team reports.

While there are some mutations of HIV that are resistant to N6, they rarely developed. This suggests that the virus doesn’t have as much time to react to the antibody as it has with other treatments scientists are exploring.

“The rare occurrence of N6 resistance mutations suggests that such mutations come at a relatively high fitness cost, which might represent a partial barrier to the selection of resistant mutants,” they explain.

So far, N6 has only been tested in lab settings. Until the results can be re-created in vivo on live human trials, the team recommends we remain cautiously optimistic.

Of course, these results have so far only been demonstrated in the lab, so until we see the same levels of success in actual human trials, we need to remain cautiously optimistic. However, given recent breakthroughs by UK researchers, who managed to completely flush HIV out of a patient’s system and those of a German team’s gene-snipping approach, a reliable cure for HIV/AIDS may be just around the corner.

The full paper “Identification of a CD4-Binding-Site Antibody to HIV that Evolved Near-Pan Neutralization Breadth” has been published in the journal Immunity.

share Share

A Fossil So Strange Scientists Think It’s From a Completely New Form of Life

This towering mystery fossil baffled scientists for 180 Years and it just got weirder.

ChatGPT Seems To Be Shifting to the Right. What Does That Even Mean?

ChatGPT doesn't have any political agenda but some unknown factor is causing a subtle shift in its responses.

This Freshwater Fish Can Live Over 120 Years and Shows No Signs of Aging. But It Has a Problem

An ancient freshwater species may be quietly facing a silent collapse.

The US wants to know if researchers in other countries follow MAGA doctrine

Science and policy are never truly free from one another. But one country's policy doesn't typically cross borders.

A Week of Cold Plunges Could Help Your Cells Fight Aging and Disease

Cold exposure "trains" cells to be more efficient at cleaning themselves up.

England will start giving morning-after pill for free

Free contraception in the UK clashes starkly with the US under Trump's shadow.

Japan’s Cherry Blossoms Are Blooming Earlier Than Ever. Guess Why

Climate change is disrupting natural cycles.

The most successful space telescope you never heard of just shut down

An astronomer says goodbye to Gaia, the satellite that mapped the galaxy.

A Gene-Edited Pig Liver Was Hooked to a Human for 10 Days and It Actually Worked

Breakthrough transplant raises hopes for patients needing liver support or awaiting transplants.

These researchers counted the trees in China using lasers

The answer is 142 billion. Plus or minus a few, of course.