homehome Home chatchat Notifications


Moth wings pave the way toward a less-noisy future by inspiring ultra-thin sound absorbers

Sometimes, copying nature can help us find amazing design ideas.

Alexandru Micu
June 15, 2022 @ 10:00 pm

share Share

Moth wings could point the way towards lightweight, more efficient sound absorbers.

Close-up of a moth wing scale. Image credits University of Bristol.

Researchers at the University of Bristol have found that the scales on moth wings can be a surprising source of silence for us all. These structures act as excellent sound dampeners and absorbers even when placed on artificial surfaces. This property is owed to the dampening effect that moth wings have evolved in order to keep the insects safe from their arch-nemesis: bats.

Cashing in on an arms race

“What is even more impressive is that the wings are doing this whilst being incredibly thin, with the scale layer being only 1/50th of the thickness of the wavelength of the sound that they are absorbing,” explained lead author Dr. Thomas Neil. “This extraordinary performance qualifies the moth wing as a naturally occurring acoustic absorbing metasurface, a material that has unique properties and capabilities, that are not possible to create using conventional materials.”

You might not be able to tell, judging by how many of these flying critters pop up every summer, but moths are actually experiencing heavy predatory pressures from bats around the world. In fact, they have been experiencing this for some 65 million years and, during all that time, they have picked up a few tricks.

One of these was only recently discovered by researchers: the fact that moth wings act as sound absorbers. Such a property gives the insects a measure of protection from bats, which use echolocation calls to find prey. The sound-dampening quality of these wings is produced by specialized scales that line them.

Now, the same team of researchers at the University of Bristol report that these wings can act as excellent sound absorbers even when placed upon artificial surfaces. The results point the way toward novel metamaterials that can act as much more efficient sound-absorbing panels compared to today’s options.

“What we needed to know first, was how well these moth scales would perform if they were in front of an acoustically highly reflective surface, such as a wall,” says Prof. Marc Holderied of Bristol’s School of Biological Sciences, corresponding author of the study. “We also needed to find out how the mechanisms of absorption might change when the scales were interacting with this surface.”

The researchers tested these properties by placing sections of moth wing on an aluminium disk and then testing their effect on sound waves hitting them at different orientations. They also examined how the wings’ ability to absorb sound was affected by the removal of scale layers.

They report that moth wings could absorb as much as 87% of incoming sound energy even when placed on a solid substrate, with this effect constant across a wide range of frequencies and directions for the incoming sound. This is a very good indication that the structures which make up the wings of moths can show us how to build high-efficiency, ultrathin sound-absorbing panels. As cities get louder, the team explains, there is a growing need for such high-performance sound mitigation elements. They also have great potential in the travel industry, where they can help increase efficiencies and reduce CO2 emissions by reducing weight.

Going forward, the team plans to replicate the sound-absorbing properties of these wings in a prototype metamaterial and tweak it so that it interacts most with sounds at frequencies that our ears perceive. Currently, the moth wing scales interact with sounds at the ultrasound frequency range, which is above what the human ear can pick up on.

“Moths are going to inspire the next generation of sound absorbing materials,” Prof. Holderied concludes. “One day it will be possible to adorn the walls of your house with ultrathin sound absorbing wallpaper, using a design that copies the mechanisms that gives moths stealth acoustic camouflage.”

The paper “Moth wings as sound absorber metasurface” has been published in the journal Proceedings of the Royal Society A: Mathematical and Physical Sciences.

share Share

Your gut has a secret weapon against 'forever chemicals': microbes

Our bodies have some surprising allies sometimes.

High IQ People Are Strikingly Better at Forecasting the Future

New study shows intelligence shapes our ability to forecast life events accurately.

Cheese Before Bed Might Actually Be Giving You Nightmares

Eating dairy or sweets late at night may fuel disturbing dreams, new study finds.

Your Personal Air Defense System Is Here and It’s Built to Vaporize Up to 30 Mosquitoes per Second with Lasers

LiDAR-guided Photon Matrix claims to fell 30 mosquitoes a second, but questions remain.

Scientists Ranked the Most Hydrating Drinks and Water Didn't Win

Milk is more hydrating than water. Here's why.

Methane Leaks from Fossil Fuels Hit Record Highs. And We're Still Looking the Other Way

Powerful leaks, patchy action, and untapped fixes keep methane near record highs in 2024.

Astronomers Found a Star That Exploded Twice Before Dying

A rare double explosion in space may rewrite supernova science.

This Enzyme-Infused Concrete Could Turn Buildings into CO2 Sponges

A new study offers a greener path for concrete, the world’s dirtiest building material.

Buried in a Pot, Preserved by Time: Ancient Egyptian Skeleton Yields First Full Genome

DNA from a 4,500-year-old skeleton reveals ancestry links between North Africa and the Fertile Crescent.

AI Helped Decode a 3,000-Year-Old Babylonian Hymn That Describes a City More Welcoming Than You’d Expect

Rediscovered text reveals daily life and ideals of ancient Babylon.