homehome Home chatchat Notifications


Scientists just found half of the universe's missing matter, and strengthened the Standard Model in the process

It was floating around where we estimated it would be.

Alexandru Micu
October 10, 2017 @ 5:32 pm

share Share

The missing matter in our universe has been found — and it’s exactly where we thought it would be.

Matter.

Image via Pixabay.

Chances are you’re familiar with dark matter, that ‘stuff’ which can exert gravity but doesn’t yet seem to do much else. It makes up around 27% of all the universe. We also have dark energy, which makes up about 68% of everything, and then there’s the normal, regular matter you or me are made of. This latter variety only makes up 5% of the known universe, which may come as a surprise, since it literally makes up our whole world.

We’re still trying to understand dark matter and dark energy, but in the meantime, scientists have put another scientific mystery to rest: accounting for all ‘normal’ matter.

Where my matter at?

Simply put, scientists couldn’t account for half of all matter that has to be out there, that 5% that we can actually see and interact with. Our working theory was that this matter could be found as very diffuse strands of plasma spread between galaxies. Given the huge spans of space involved here, even a very wispy gas could add up to a huge amount, as much as that contained by all visible galaxies combined.

Problem is, if that matter keeps floating around in such a thin and insubstantial form, how do we actually detect it?

Two groups of astronomers have developed a method that allows them to do just that. A research team at the Institute of Space Astrophysics (IAS) in Orsay, France, and one from the University of Edinburgh, used data from the Planck satellite to see the effect this matter has on the cosmic background radiation, CBR.

To do so they relied on a physical phenomenon known as the Sunyaev-Zel’dovich effect. The boiled down version is that when CBR passes through hot plasma (which is ionized gas) this latter one brightens just enough for us to capture it. Using data from the Sloan Digital Sky Survey, each team chose pairs of galaxies believed to be connected by baryon strands (baryons are elemental particles of ‘normal’ matter). To make the individual strands more visible, they then stacked the Planck signals for these areas. The French team worked with about 260,000 pairs of galaxies, while their Scottish counterparts worked with over a million pairs.

Plasma lamp.

Image via Wikipedia.

Both reached a similar result. The IAS team calculated that the baryon gasses are three times denser than the baseline mass of matter in the universe, while the Edinburgh team calculated them to be six times denser than the baseline. While the numbers differ a bit (we’re talking super small values here, so the differences between the team are minute), both were dense enough for filaments to form. Overall, the extra matter in this filaments is enough to account for the missing half of normal matter in the universe.

It also shows that the physical models we use to explain the world around us are sound. The theory of matter filaments is decades old, but scientists have simply lacked the technological means to test it up to now. Finding the filaments, and a way to detect them in the future could even help us navigate in inter-galactic space — if we ever get so far.

The two papers “A Search for Warm/Hot Gas Filaments Between Pairs of SDSS Luminous Red Galaxies” (IAS) and “Missing baryons in the cosmic web revealed by the Sunyaev-Zel’dovich effect” (Edinburgh) have both been published in the preprint server ArXiv.

share Share

What Happens When You Throw a Paper Plane From Space? These Physicists Found Out

A simulated A4 paper plane takes a death dive from the ISS for science.

The Oldest Dog Breed's DNA Reveals How Humans Conquered the Arctic — and You’ve Probably Never Heard of It

Qimmeq dogs have pulled Inuit sleds for 1,000 years — now, they need help to survive.

A New Vaccine Could Stop One of the Deadliest Forms of Breast Cancer Before It Starts

A phase 1 trial hints at a new era in cancer prevention

After 700 Years Underwater Divers Recovered 80-Ton Blocks from the Long-Lost Lighthouse of Alexandria

Divered recover 22 colossal blocks from one of the ancient world's greatest marvels.

Scientists Discover 9,000 Miles of Ancient Riverbeds on Mars. The Red Planet May Have Been Wet for Millions of Years

A new look at Mars makes you wonder just how wet it really was.

This Is Why Human Faces Look So Different From Neanderthals

Your face stops growing in a way that neanderthals' never did.

Ozempic Is Changing More Than Waistlines as Scientists Wise Up to Concerning Side Effects

But GLP-1 drugs also offer many benefits beyond weight loss.

Researchers stop Parkinson's symptoms in mice using a copper supplement. Could humans be next?

Could we stop Parkinson's by feeding neurons copper?

There's a massive, ancient river system under Antarctica's ice sheet

This has big implications for our climate models.

I Don’t Know Who Needs to Hear This, But It's Okay to Drink Coffee in the Summer

Finally, some good news.