homehome Home chatchat Notifications


New shape-shifting metal particles shred drug-resistant bacteria to bits

You can't adapt to gettin' stabbed.

Alexandru Micu
January 14, 2020 @ 6:00 pm

share Share

New research at RMIT University is looking into liquid metals as a solution to drug-resistant bacteria.

Image credits Aaron Elbourne et al., (2020), ACS Nano.

The approach the team is working on involves using magnetic particles of liquid metals to physically destroy bacteria, side-stepping the use of antibiotics entirely. The study describes how this technique can be used to destroy both bacteria and bacterial biofilms — protective, layered structures that house bacteria — without harming human cells.

A shred of hope

“We’re heading to a post-antibiotic future, where common bacterial infections, minor injuries and routine surgeries could once again become deadly,” says Dr Aaron Elbourne, a Postdoctoral Fellow in the Nanobiotechnology Laboratory at RMIT, and the paper’s lead author.

“It’s not enough to reduce antibiotic use, we need to completely rethink how we fight bacterial infections.”

The rising levels of antibiotic resistance recorded throughout the world is a very scary development, one that we’ll have to tackle sooner rather than later. Modern antibiotics fundamentally changed the rules of life for us when they were first developed 90 years ago. Before that, any infection was basically the luck of the draw: even a routine medical intervention or the most unassuming of wounds could become infected, and even the humblest infection could kill.

They still can, but modern antibiotics offer us a level of protection that people in the past could only pray for. Still, overuse and misuse of these compounds are forcing pathogens to adapt and survive, and they’re doing so much faster than we can develop new, more powerful drugs. It’s estimated that antibiotic-resistant bacteria cause in excess of 700,000 deaths per year, a figure which could reach 10 million a year by 2050 (which would make it deadlier than cancer). Bacteria’s ability to form biofilms further complicates the matter, as such structures render them virtually immune to all existing antibiotics.

Antibiotics are chemical compounds that prevent bacteria from functioning properly. They can do this through a range of methods: by blocking their ability to form proteins, by breaking down their membrane, or by interfering with their ability to reproduce. Human cells and bacterial cells are similar but different enough that antibiotics can be made to target the latter and leave the former unaffected.

The team wanted to develop a whole new method to attack pathogens, one that does away completely with chemical means (which bacteria can adapt to).

“Bacteria are incredibly adaptable and over time they develop defences to the chemicals used in antibiotics, but they have no way of dealing with a physical attack,” Dr. Elbourne explains.

“Our method uses precision-engineered liquid metals to physically rip bacteria to shreds and smash through the biofilm where bacteria live and multiply.”

The team’s approach involves the use of nano-sized droplets of liquid metal. When exposed to a low-intensity magnetic field, these droplets change shape and grow sharp edges.

To check how effective they would be at the task, the team placed droplets in contact with a bacterial biofilm then made them change shape. The sharp edges broke down the biofilm and physically ruptured the bacterial cells inside, the team found. They proved effective against both Gram-positive and Gram-negative bacterial biofilms. After 90 minutes of exposure to the particles, both biofilms were destroyed and 99% of the bacteria inside were killed, the team explains, suggesting that they would be effective as a wide-range treatment option. Human cells were left unaffected by the nanoparticles.

The team says that their method is versatile enough to be used in multiple settings and approaches. For example, a coating of the nanoparticles could be sprayed on implants to help prevent infections for hip or knee replacements. They also plan to explore its effectiveness against fungal infections, cancerous tumors, and build-ups such as cholesterol plaques.

“There’s also potential to develop this into an injectable treatment that could be used at the site of infection,” said Dr Vi Khanh, a Postdoctoral Research Fellow at the North Carolina State University and co-author of the paper.

The nanoparticles are currently undergoing preclinical trials in animals. If all goes well, human trials could start in a few years.

The paper “Antibacterial Liquid Metals: Biofilm Treatment via Magnetic Activation” has been published in the journal ACS Nano.

share Share

A Dutch 17-Year-Old Forgot His Native Language After Knee Surgery and Spoke Only English Even Though He Had Never Used It Outside School

He experienced foreign language syndrome for about 24 hours, and remembered every single detail of the incident even after recovery.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.

Westerners cheat AI agents while Japanese treat them with respect

Japan’s robots are redefining work, care, and education — with lessons for the world.

Scientists Turn to Smelly Frogs to Fight Superbugs: How Their Slime Might Be the Key to Our Next Antibiotics

Researchers engineer synthetic antibiotics from frog slime that kill deadly bacteria without harming humans.

This Popular Zero-Calorie Sugar Substitute May Be Making You Hungrier, Not Slimmer

Zero-calorie sweeteners might confuse the brain, especially in people with obesity

Any Kind of Exercise, At Any Age, Boosts Your Brain

Even light physical activity can sharpen memory and boost mood across all ages.

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

Beetles Conquered Earth by Evolving a Tiny Chemical Factory

There are around 66,000 species of rove beetles and one researcher proposes it's because of one special gland.