homehome Home chatchat Notifications


Mathematics explains how lizards get their patterns

Math is all around us.

Elena Motivans
April 17, 2017 @ 2:00 pm

share Share

When you think about math, it often seems like an abstract concept that doesn’t connect to the real world. Actually, some patterns in animals can be explained by mathematical equations. Turing equations explain how many animals get certain coloured stripes or spots on a cellular level. The ocellated lizard’s (Timon lepidus) scale colours do not follow the Turing equations and are instead determined by the colour of their neighbouring cell. However, it turns that the Turing equations still do apply on a smaller level.

Changing scales

Researchers at the University of Geneva (UNIGE), Switzerland, and SIB Swiss Institute of Bioinformatics looked at how the ocellated lizard’s scales form their intricate patterns. The researchers took photos of the backs of three male lizards, from when they were 2 weeks old up to when they were 3 or 4 years old. Using the images, the researchers tracked the fate of approximately 5,000 hexagonal scales on their backs.

The intricate pattern of the scales, up-close and on the lizard. Credit: ©UNIGE.

As the lizards age, their scales change from brown with white spots to an intricate green and black pattern. The scales change colour one by one. About 1,500 scales changed colour in total per lizard. The researchers noticed something odd, some scales switched between the green and black colours multiple times. It turns out that the scales get their colour depending on the colour of their neighbour. In the end, each green scale had four black and two green neighbouring cells. In contrast, each black cell had three black and three green neighbours. This pattern, taking into account the colour of the neighbour, follows cellular automation, a concept in computer science.

To Turing or not to Turing

Cellular automation was invented by the mathematician John von Neumann in 1948. In cellular automation, units change their state depending on their neighbour, here a scale is a unit. The scales change colours depending on the colour of the scale next to them. In contrast, Alan Turing’s equations, discovered in 1952, involve microscopic interactions among coloured cells. Turing equations determine colour independently of any skin feature such as a hair or scale.

Zebrafish patterns follow the Turing equations and colour is determined by cell, not by scale. Image credits: Oregon State University.

But why don’t the lizards’ patterns follow the Turing equations as most other animals do? The scales themselves are clear but the colour of the underlying skin determines the colour of the scale, black or green. The skin under the scales is thick and there’s lots of space for the cells to interact. However, between scales, the skin is thin and there’s not so much room for interaction. The colour is limited to the scale-level, as opposed to the cell-level. In this case, 3D geometric skin features like these can interrupt a Turing pattern.

“But when you can show that there are general mathematical principles that can describe biological processes it provides a nice conceptual framework to understand what’s happening,” says Devi Stuart-Fox, an evolutionary biologist at the University of Melbourne in Australia.

In this lizard species, both Turing equations and cellular automation are actually at work determining the scale colour. This scientific discovery connects two well-known mathematic concepts. It is proof that math is not just restricted to the books!

Journal reference: Manukyan, L. et al. A living mesoscopic cellular automaton made of skin scales. Nature http://dx.doi.org/10.1038.nature22031 (2017).

share Share

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.

Westerners cheat AI agents while Japanese treat them with respect

Japan’s robots are redefining work, care, and education — with lessons for the world.

Scientists Turn to Smelly Frogs to Fight Superbugs: How Their Slime Might Be the Key to Our Next Antibiotics

Researchers engineer synthetic antibiotics from frog slime that kill deadly bacteria without harming humans.

This Popular Zero-Calorie Sugar Substitute May Be Making You Hungrier, Not Slimmer

Zero-calorie sweeteners might confuse the brain, especially in people with obesity

Any Kind of Exercise, At Any Age, Boosts Your Brain

Even light physical activity can sharpen memory and boost mood across all ages.

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

We Should Start Worrying About Space Piracy. Here's Why This Could be A Big Deal

“We are arguing that it’s already started," say experts.

An Experimental Drug Just Slashed Genetic Heart Risk by 94%

One in 10 people carry this genetic heart risk. There's never been a treatment — until now.

We’re Getting Very Close to a Birth Control Pill for Men

Scientists may have just cracked the code for male birth control.