homehome Home chatchat Notifications


These architectural wonders were built by robots

University of Stuttgart’s Institute for Computational Design (ICD) is a state of the art research facility that seeks to solve complex structural problems by mimicking nature. Every year, the institute demonstrates how natural biological constructions can be used to solve design problems by building a new research wing. The results are nothing short of breath taking. […]

livia rusu
July 18, 2014 @ 10:53 am

share Share

Photo credit: ICD

Photo credit: ICD

University of Stuttgart’s Institute for Computational Design (ICD) is a state of the art research facility that seeks to solve complex structural problems by mimicking nature. Every year, the institute demonstrates how natural biological constructions can be used to solve design problems by building a new research wing. The results are nothing short of breath taking. This year for instance, ICD built a structure that looks like something out of the Alien movie franchise. Who wants to move into a hive? I do.

Letting nature design your house

Photo credit: ICD

Photo credit: ICD

The challenge was to build a structure out of composite materials like glass and carbon fiber without using massive molds to dictate the shape. These sort of materials are prized because of their strength and light weight, which is why they’re often used to make Formula One cars or racing sails. To be useful , however, the materials need to be layered into a mold such that they may turn shape. This is fine for mass produced parts, but not so much when buildings are concerned as using molds would increase the time of construction and cost by orders of magnitude.

Photo credit: ICD

White material is glass fibre, while dark material is carbon fibre. Photo credit: ICD

So, rather than build a mold for every component, the ICD researchers took a shortcut and went for building the components directly. To achieve this, the team took inspiration from the beetle and its elytron, a protective shield that covers the insect’s wings.  The elytron is double-layered and is made out of stiff, strong fibrous material. After carefully analyzing the elytron, the researchers built an algorithm that gave them the most optimal solution for a double woven layer of fibers without the use of a core.

[ALSO READ] First 3-D printed house looks amazing! [GALLERY]

“You can lay the fibers in exactly the direction and density that is required to satisfy the structural requirements,” says Achim Menges, head of the ICD for Wired. “That’s exactly what we see in nature.”

A six-axis robot then weaved individual fibers atop of each other. At the end, the fibers amounted to a beautifully intricate web-like structure made out of 36 woven modules that’s surprisingly stable. Design and building process below:

Last year’s project involved building a peanut-shaped pavilion from 243 geometric plates made out of beech wood.  Each plate is a mere 50-millimetres thick and were inspired by the skeletal system of sea urchins and the microscopic joints of sand dollars.  The researchers again used computational methods to solve the complex problem and came out with the optimal shape that uses the least amount of wood. Design and building process below:

While the demonstrations are definitely awesome, the end goal is far more reaching than meets the eye. The ICD researchers hope these pilot design and fabrication processes might become introduced into the real world. The methods can be used to develop stable structures that are stronger, cheaper and easier to make than through conventional methods.

share Share

Evolution just keeps creating the same deep-ocean mutation

Creatures at the bottom of the ocean evolve the same mutation — and carry the scars of human pollution

Scientists Found a 380-Million-Year-Old Trick in Velvet Worm Slime That Could Lead To Recyclable Bioplastic

Velvet worm slime could offer a solution to our plastic waste problem.

Beetles Conquered Earth by Evolving a Tiny Chemical Factory

There are around 66,000 species of rove beetles and one researcher proposes it's because of one special gland.

These researchers counted the trees in China using lasers

The answer is 142 billion. Plus or minus a few, of course.

New Diagnostic Breakthrough Identifies Bacteria With Almost 100% Precision in Hours, Not Days

A new method identifies deadly pathogens with nearly perfect accuracy in just three hours.

Miyazaki Hates Your Ghibli-fied Photos and They're Probably a Copyright Breach Too

“I strongly feel that this is an insult to life itself,” he said.

This Tamagotchi Vape Dies If You Don’t Keep Puffing

Yes. You read that correctly. The Stupid Hackathon is an event like no other.

Wild Chimps Build Flexible Tools with Impressive Engineering Skills

Chimpanzees select and engineer tools with surprising mechanical precision to extract termites.

Archaeologists in Egypt discovered a 3,600-Year-Old pharaoh. But we have no idea who he is

An ancient royal tomb deep beneath the Egyptian desert reveals more questions than answers.

Researchers create a new type of "time crystal" inside a diamond

“It’s an entirely new phase of matter.”