homehome Home chatchat Notifications


These architectural wonders were built by robots

University of Stuttgart’s Institute for Computational Design (ICD) is a state of the art research facility that seeks to solve complex structural problems by mimicking nature. Every year, the institute demonstrates how natural biological constructions can be used to solve design problems by building a new research wing. The results are nothing short of breath taking. […]

livia rusu
July 18, 2014 @ 10:53 am

share Share

Photo credit: ICD

Photo credit: ICD

University of Stuttgart’s Institute for Computational Design (ICD) is a state of the art research facility that seeks to solve complex structural problems by mimicking nature. Every year, the institute demonstrates how natural biological constructions can be used to solve design problems by building a new research wing. The results are nothing short of breath taking. This year for instance, ICD built a structure that looks like something out of the Alien movie franchise. Who wants to move into a hive? I do.

Letting nature design your house

Photo credit: ICD

Photo credit: ICD

The challenge was to build a structure out of composite materials like glass and carbon fiber without using massive molds to dictate the shape. These sort of materials are prized because of their strength and light weight, which is why they’re often used to make Formula One cars or racing sails. To be useful , however, the materials need to be layered into a mold such that they may turn shape. This is fine for mass produced parts, but not so much when buildings are concerned as using molds would increase the time of construction and cost by orders of magnitude.

Photo credit: ICD

White material is glass fibre, while dark material is carbon fibre. Photo credit: ICD

So, rather than build a mold for every component, the ICD researchers took a shortcut and went for building the components directly. To achieve this, the team took inspiration from the beetle and its elytron, a protective shield that covers the insect’s wings.  The elytron is double-layered and is made out of stiff, strong fibrous material. After carefully analyzing the elytron, the researchers built an algorithm that gave them the most optimal solution for a double woven layer of fibers without the use of a core.

[ALSO READ] First 3-D printed house looks amazing! [GALLERY]

“You can lay the fibers in exactly the direction and density that is required to satisfy the structural requirements,” says Achim Menges, head of the ICD for Wired. “That’s exactly what we see in nature.”

A six-axis robot then weaved individual fibers atop of each other. At the end, the fibers amounted to a beautifully intricate web-like structure made out of 36 woven modules that’s surprisingly stable. Design and building process below:

Last year’s project involved building a peanut-shaped pavilion from 243 geometric plates made out of beech wood.  Each plate is a mere 50-millimetres thick and were inspired by the skeletal system of sea urchins and the microscopic joints of sand dollars.  The researchers again used computational methods to solve the complex problem and came out with the optimal shape that uses the least amount of wood. Design and building process below:

While the demonstrations are definitely awesome, the end goal is far more reaching than meets the eye. The ICD researchers hope these pilot design and fabrication processes might become introduced into the real world. The methods can be used to develop stable structures that are stronger, cheaper and easier to make than through conventional methods.

share Share

How Hot is the Moon? A New NASA Mission is About to Find Out

Understanding how heat moves through the lunar regolith can help scientists understand how the Moon's interior formed.

America’s Favorite Christmas Cookies in 2024: A State-by-State Map

Christmas cookie preferences are anything but predictable.

The 2,500-Year-Old Gut Remedy That Science Just Rediscovered

A forgotten ancient clay called Lemnian Earth, combined with a fungus, shows powerful antibacterial effects and promotes gut health in mice.

Should we treat Mars as a space archaeology museum? This researcher believes so

Mars isn’t just a cold, barren rock. Anthropologists argue that the tracks of rovers and broken probes are archaeological treasures.

Hidden for Centuries, the World’s Largest Coral Colony Was Mistaken for a Shipwreck

This massive coral oasis offers a rare glimmer of hope.

This Supermassive Black Hole Shot Out a Jet of Energy Unlike Anything We've Seen Before

A gamma-ray flare from a black hole 6.5 billion times the Sun’s mass leaves scientists stunned.

Scientists Say Antimatter Rockets Could Get Us to the Stars Within a Lifetime — Here’s the Catch

The most explosive fuel in the universe could power humanity’s first starship.

Superflares on Sun-Like Stars Are Much More Common Than We Thought

Sun-like stars release massive quantities of radiation into space more often than previously believed.

This 100-Page Proof Claims to Have Solved the World’s Most Frustrating Math Puzzle: What's The Largest Sofa That Fits Around a Corner?

Mathematician claims to have cracked the annoying puzzle of fitting a sofa around a corner.

This Wild Quasiparticle Switches Between Having Mass and Being Massless. It All Depends on the Direction It Travels

Scientists have stumbled upon the semi-Dirac fermion, first predicted 16 years ago.