homehome Home chatchat Notifications


New "meringue" material could make air travel much quieter

Researchers find a way to isolate the noise coming out of the engines

Fermin Koop
June 21, 2021 @ 2:08 pm

share Share

A lot of time may have passed since your last flight because of the pandemic restrictions, but there’s probably one thing that you remember from then: the noise. Air travel is one of the fastest ways to travel long distances but also one of the noisiest ways to spend a couple of hours. Now, researchers have created a new material that could improve that experience substantially.

Image credit: Flickr / Andrew Malone

The noise from a plane is caused by air going over its body and from its engines. A moving aircraft causes friction and turbulence, which triggers sound waves — and the faster the aircraft is flying, the more turbulence and friction is produced. When the aircraft’s landing gear and flaps are used, more noise is made as more resistance is created.

Meanwhile, engine noise is caused by the sound of moving parts, and by the air coming out of the engine at high speed and interacting with still air, creating friction. Modern bypass engines, which introduce a layer of moderately fast-moving cold air between the hot exhaust and the still air, are quieter than early jet engines.

The elimination of aircraft noises may now be on the radar. A group of researchers at the University of Bath, UK, have developed a new material, inspired by the lightweight structure of a meringue dessert, that could significantly reduce aircraft engine noise and improve passenger comfort.

Silence!

The development of innovative acoustic materials has been of huge interest in the past decades, in particular, porous absorbers such as cellular foams have been extensively studied and adopted for several engineering applications. While they have good sound absorption, they are typically bulky and heavyweight, limiting their application.

That’s why the researchers at Bath started exploring the use of graphene oxide (GO), which they believe is an ideal candidate for engineering novel sound absorbers. The material has been evaluated in the past for various applications such as water treatment, energy storage and thermal insulation but never before for sound. 

Aerogel in honeycomb structure. Image credit: The researchers

Using graphene oxide, they created a low-density aerogel that weighs just 2.1 kilogram per cubic meter, making it the lightest sound insulation ever manufactured. Aircraft manufacturers could use it as insulation within aircraft engines to reduce noise by up to 16 decibels, reducing the road of a jet engine off to a sound similar to a hairdryer. 

“We managed to produce such an extremely low density by using a liquid combination of graphene oxide and a polymer, which are formed with whipped air bubbles and freeze-casted. On a very basic level, the technique can be compared with whipping egg whites to create meringues – it’s solid but contains a lot of air, so there is no weight,” Michele Meo, who led the research, said in a statement.

The material is currently being further developed by the research team to offer improved heat dissipation, offering benefits to fuel efficiency and safety. While their focus is to work with partners in aerospace to test the material in aeroplane engines, they believe it could also be used in helicopters or car engines. The aerogel should be ready to use in 18 months. 

The study was published in the journal Scientific Reports. 

share Share

How Hot is the Moon? A New NASA Mission is About to Find Out

Understanding how heat moves through the lunar regolith can help scientists understand how the Moon's interior formed.

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.