homehome Home chatchat Notifications


Life may be teeming just inches beneath Europa's frozen surface

An exciting new study entertains the possibility of alien life on Jupiter's icy moon.

Mihai Andrei
July 27, 2018 @ 7:36 pm

share Share

Life may be tantalizingly close to Europa’s surface — just deep enough to be hidden from us, but close enough that mere scratches could bring it to the surface.

Radiation from Jupiter can destroy molecules on Europa’s surface. Material from Europa’s ocean that ends up on the surface will be bombarded by radiation, possibly destroying any biosignatures, or chemical signs that could imply the presence of life. Credit: NASA/JPL-Caltech.

As far as alien life is concerned, Europa doesn’t seem like a particularly attractive place, at least at a first glance. Jupiter’s frozen moon seems like a small, barren world, too far away from the Sun to draw any interest. But modern science has found that beneath Europa’s frigid surface, there almost certainly lies an ocean of liquid water — an ocean of water believed to be in direct contact with the satellite’s core, which could lead to intriguing chemical reactions that favor the development of life. We already know from thermal vents on Earth that ecosystems can form without energy from the sun, relying on chemical and thermal energy from the depths of the ocean.

Could this also be the case on Europa?

Well, astronomers already suspect that plumes of water and gas could contain the biosignatures of life, but then again — so might the surface of Europa itself. In a new study addressing this issue, researchers explain that if these signatures exist, they may very well be close to the surface — they just need to survive the intense radiation pummeling from Jupiter, which can destroy or alter material transported up to the surface.

“Our results also show that amino acids, although heavily reduced in concentration, would persist at detectable levels … over 10 million year timescales at 10 centimeter depths even in the harshest radiation environments on the surface of Europa,” the researchers write in the paper, published today in Nature Astronomy.

Europa’s surface might host signs of life. Image credits: NASA.

They published a new comprehensive map detailing this radiation. As scientists are trying to see what the best places to search for life are, this type of map can be extremely useful for deciding where not to look. The lead author Tom Nordheim, research scientist at NASA’s Jet Propulsion Laboratory, Pasadena, California, explains that understanding how radiation acts on Europa is vital for this search for alien life.

“If we want to understand what’s going on at the surface of Europa and how that links to the ocean underneath, we need to understand the radiation,” Nordheim said. “When we examine materials that have come up from the subsurface, what are we looking at? Does this tell us what is in the ocean, or is this what happened to the materials after they have been radiated?”

Nordheim and colleagues found that radiation-surviving amino acids could hide as close as 10 cm beneath the surface — a mere scratch away — though in reduced concentrations. If they want to increase their odds of finding life, astronomers should go further from Europa’s equator, towards its higher latitudes — where the moon points away from Jupiter. Furthermore, they should look for “young” ice, no older than 10 million years.

Of course, this is all based on a huge hypothetical: the idea that life on Europa does exist — something which we have no information about and are only theorizing at the moment. But the study comes right in time, as both NASA and the ESA aim to send life-searching shuttles to Europa in the not-so-distant future: the early 2020s.

The so-called Europa Clipper mission from NASA will explore the habitability of Europa, and tell its sister mission, the Europa Lander, where to look for signs of life. Meanwhile, JUICE (JUpiter’s ICy moon Explorer) will perform detailed investigations on Ganymede — another Jovian moon similar to Europa — and will also carry out investigations of Europa.

These missions would both benefit from this radiation map.

“The radiation that bombards Europa’s  leaves a fingerprint,” said Kevin Hand, co-author of the new research and project scientist for the potential Europa Lander mission. “If we know what that fingerprint looks like, we can better understand the nature of any organics and possible biosignatures that might be detected with future missions, be they spacecraft that fly by or land on Europa.”

Journal Reference: T. A. Nordheim et al. Preservation of potential biosignatures in the shallow subsurface of Europa, Nature Astronomy (2018). DOI: 10.1038/s41550-018-0499-8

share Share

A Dutch 17-Year-Old Forgot His Native Language After Knee Surgery and Spoke Only English Even Though He Had Never Used It Outside School

He experienced foreign language syndrome for about 24 hours, and remembered every single detail of the incident even after recovery.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.

Westerners cheat AI agents while Japanese treat them with respect

Japan’s robots are redefining work, care, and education — with lessons for the world.

Scientists Turn to Smelly Frogs to Fight Superbugs: How Their Slime Might Be the Key to Our Next Antibiotics

Researchers engineer synthetic antibiotics from frog slime that kill deadly bacteria without harming humans.

This Popular Zero-Calorie Sugar Substitute May Be Making You Hungrier, Not Slimmer

Zero-calorie sweeteners might confuse the brain, especially in people with obesity

Any Kind of Exercise, At Any Age, Boosts Your Brain

Even light physical activity can sharpen memory and boost mood across all ages.

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

Beetles Conquered Earth by Evolving a Tiny Chemical Factory

There are around 66,000 species of rove beetles and one researcher proposes it's because of one special gland.