homehome Home chatchat Notifications


The curious case of Jupiter's lightning, solved by the Juno craft

Lightning bolts on Jupiter are both similar and completely different from those on Earth.

Alexandru Micu
June 7, 2018 @ 12:18 pm

share Share

Lightning bolts on Jupiter are both similar and completely different from those on Earth, research suggests.

Jupiter Lightning.

Artist’s concept of lightning in Jupiter’s northern hemisphere. The image is based on a JunoCam image.
Image credit:sNASA/JPL-Caltech/SwRI/JunoCam.

A new paper published by NASA’s Juno mission comes to flesh out our understanding of Jovian lightning. Their existence was first confirmed when the Voyager 1 craft flew past Jupiter in March 1979 — but that encounter also left us with more unanswered questions. Radio emissions produced by these lightning bolts didn’t match the signatures of those on Earth, for example.

God of Lightning

“No matter what planet you’re on, lightning bolts act like radio transmitters—sending out radio waves when they flash across a sky,” said lead author Shannon Brown of NASA’s Jet Propulsion Laboratory in Pasadena, California.

“But until Juno, all the lightning signals recorded by spacecraft were limited to either visual detections or from the kilohertz range of the radio spectrum, despite a search for signals in the megahertz range. Many theories were offered up to explain it, but no one theory could ever get traction as the answer.”

Fancy science-speak for ‘we didn’t have a clue what was up’. The Juno mission, however, gave researchers a chance to dig deeper into Jupiter’s lightning. The craft has been orbiting the gas giant since July 4, 2016. Among other onboard equipment, it boasted a Microwave Radiometer Instrument (MWR) to record emissions across a wide spectrum of frequencies

During its first eight flybys of Jupiter, Juno detected 377 lightning discharges, the team reports. Emissions were recorded in both the megahertz and gigahertz range, “which is what you can find with terrestrial lightning emissions,” according to Brown.

“We think the reason we are the only ones who can see it is because Juno is flying closer to the lighting than ever before, and we are searching at a radio frequency that passes easily through Jupiter’s ionosphere,” she adds.

These recordings show that lightning on Jupiter is very similar to that on Earth — but there are also differences.

Most striking of all is how these discharges are distributed across the planet’s surface. On Jupiter, these bolts of lightning flash frequently across the giant’s poles, but never over the equator. This doesn’t hold true on Earth. The reason behind this, the team believes, is how heat is distributed across the two planets.

The overwhelming majority of heat on Earth comes from the Sun. Our equator receives a much larger slice of this energy than the rest of the planet (that’s why it’s the hottest bit), meaning air masses above the equator have a lot of energy at their disposal to move around through convection. This movement is what fuels the thunderstorms which, in turn, produce lightning.

On Jupiter, however, sunlight is much, much dimmer. The giant is, after all, five times farther away from the Sun than Earth. This means the planet receives 25 times less heat than our planet. Most of the energy in Jupiter’s atmosphere is derived from its solid core. However, the team explains, that tiny quantity of heat it does receive from the Sun does heat up its equator more than the poles. The team believes that this difference in temperature is enough to stabilize Jupiter’s upper atmosphere around the equator, preventing gases further below to rise through convection.

The atmosphere around Jupiter’s poles, which receive less energy, isn’t stable — warm gases rising from below drive convection processes, creating lightning.

“These findings could help to improve our understanding of the composition, circulation and energy flows on Jupiter,” said Brown. But another question looms, she said. “Even though we see lightning near both poles, why is it mostly recorded at Jupiter’s north pole?”

The paper “Prevalent lightning sferics at 600 megahertz near Jupiter’s poles” has been published in the journal Nature.

share Share

Your gut has a secret weapon against 'forever chemicals': microbes

Our bodies have some surprising allies sometimes.

High IQ People Are Strikingly Better at Forecasting the Future

New study shows intelligence shapes our ability to forecast life events accurately.

Cheese Before Bed Might Actually Be Giving You Nightmares

Eating dairy or sweets late at night may fuel disturbing dreams, new study finds.

Your Personal Air Defense System Is Here and It’s Built to Vaporize Up to 30 Mosquitoes per Second with Lasers

LiDAR-guided Photon Matrix claims to fell 30 mosquitoes a second, but questions remain.

Scientists Ranked the Most Hydrating Drinks and Water Didn't Win

Milk is more hydrating than water. Here's why.

Methane Leaks from Fossil Fuels Hit Record Highs. And We're Still Looking the Other Way

Powerful leaks, patchy action, and untapped fixes keep methane near record highs in 2024.

Astronomers Found a Star That Exploded Twice Before Dying

A rare double explosion in space may rewrite supernova science.

This Enzyme-Infused Concrete Could Turn Buildings into CO2 Sponges

A new study offers a greener path for concrete, the world’s dirtiest building material.

Buried in a Pot, Preserved by Time: Ancient Egyptian Skeleton Yields First Full Genome

DNA from a 4,500-year-old skeleton reveals ancestry links between North Africa and the Fertile Crescent.

AI Helped Decode a 3,000-Year-Old Babylonian Hymn That Describes a City More Welcoming Than You’d Expect

Rediscovered text reveals daily life and ideals of ancient Babylon.