homehome Home chatchat Notifications


A new study reveals why ice gets so slippery -- and it wasn't what we expected

The next time you slip on a lick of ice, at least you'll know the physics behind it!

Alexandru Micu
May 10, 2018 @ 4:28 pm

share Share

New research uncovers why ice is at its slipperiest at -7°C (19.4°F) — its all in the H bonds.

Slippery sign.

Image credits SmartSign / Flickr.

It doesn’t take a Ph.D. to know that ice gets slippery. However, understanding why your foot can’t get a grip on the frigid surface has proven much more frustrating. Our best explanation up to date was offered by John Joly, an Irish physicist and geologists, in 1886. According to his theory, when an object touches the ice surface, local contact pressure can get so high that it forces the ice into a liquid form. This thin coat of water then lubricates the ice, and off goes your foot.

The theory has survived up to today, largely in its original form. The only real amendments researchers have made to Joly’s work up to today is that the melt isn’t caused by localized pressure, but by friction between the ice and an ice skate or the sole of your boot.

Slippery when free

A new paper — published by a research team led by Prof. Daniel Bonn from the University of Amsterdam and Prof. Mischa Bonn from the Max Planck Institute for Polymer Research (MPI-P) — reports that the mechanisms involved are much more complex than so far assumed. Based on macroscopic friction experiments, they write that ice can go from an extremely slippery surface at typical cold temperatures to one with very high friction at -100°C (-148°F).

To see where this temperature-depended slipperiness comes from, the team performed spectroscopic measurements on water molecules on the surface of ice chunks. The results were then compared with computer simulations of molecular dynamics, in an effort to gauge what processes were taking place in this sheet of water.

The team reports that there are two ‘kinds’ of water molecules on the surface of the ice: one that is bound by three hydrogen bonds, and thus immobile; the second type, a mobile one, is only bound by two hydrogen bonds. The latter molecules continuously roll over the ice, like tiny bearing balls, kept in motion by thermal vibrations.

As temperatures increase, fixed water molecules progressively get converted to the mobile kind. In other words, the warmer the ice gets, the more water molecules that are used to create friction start acting like bearing balls instead. The temperature-driven change in the mobility of water molecules on the surface perfectly matches how ice’s friction coefficient changes with temperature — the more mobility at the surface, the lower the friction.

This last piece of evidence led the team to conclude that the mobility of water molecules on the surface — not the presence of the water itself — is what makes ice so slippery.

While surface mobility increases all the way up to ice’s melting point, 0°C (32°F), if you want to go for maximum slippiness, you should aim for -7°C (19.4°F). According to the team, this is the temperature point at which ice’s friction is minimal — it’s also the exact same temperature imposed at speed skating rinks.

Between -7°C and 0°C, the team further explains, any gains in surface water mobility will be offset by the ice becoming softer, causing a sliding object to dig deeper into the ice.

The paper “Molecular Insight into the Slipperiness of Ice” has been published in The Journal of Physical Chemistry Letters.

share Share

A Dutch 17-Year-Old Forgot His Native Language After Knee Surgery and Spoke Only English Even Though He Had Never Used It Outside School

He experienced foreign language syndrome for about 24 hours, and remembered every single detail of the incident even after recovery.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.

Westerners cheat AI agents while Japanese treat them with respect

Japan’s robots are redefining work, care, and education — with lessons for the world.

Scientists Turn to Smelly Frogs to Fight Superbugs: How Their Slime Might Be the Key to Our Next Antibiotics

Researchers engineer synthetic antibiotics from frog slime that kill deadly bacteria without harming humans.

This Popular Zero-Calorie Sugar Substitute May Be Making You Hungrier, Not Slimmer

Zero-calorie sweeteners might confuse the brain, especially in people with obesity

Any Kind of Exercise, At Any Age, Boosts Your Brain

Even light physical activity can sharpen memory and boost mood across all ages.

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

Beetles Conquered Earth by Evolving a Tiny Chemical Factory

There are around 66,000 species of rove beetles and one researcher proposes it's because of one special gland.