homehome Home chatchat Notifications


Sand dunes communicate with each other

They're not very social, though.

Mihai Andrei
February 4, 2020 @ 4:49 pm

share Share

Dunes in the Joshua Tree National Park. Image credits: NASA.

Try to picture a sand dune — it’s not alone, is it? It’s hard to imagine a singular sand dune not surrounded by others of its kind. Saying that dunes are “social creatures” would be taking the metaphor too far, but according to new research, they can “communicate” with each other.

Not fond of neighbors

Although they might not look like it, sand dunes are very active. They shrink and grow, migrating from place to place. They also seem to develop in particular ways — whether in deserts, sea beds, or rivers, dunes usually appear in large groups, either in fields or corridors.

Wanting to better understand these processes, researchers set up an experimental ‘racetrack’, where they monitored how two identical dunes developed near a controlled stream. They found that although the two dunes started out exactly the same, they didn’t seem to like eachother that much: as time passed, they moved farther and farther away, pushed by turbulent swirls coming from the upstream dune.

It’s as if the dunes communicate and don’t get along very well.

“There are different theories on dune interaction: one is that dunes of different sizes will collide, and keep colliding, until they form one giant dune, although this phenomenon has not yet been observed in nature,” said Karol Bacik, a Ph.D. candidate in Cambridge’s Department of Applied Mathematics and Theoretical Physics, and the paper’s first author.

“Another theory is that dunes might collide and exchange mass, sort of like billiard balls bouncing off one another, until they are the same size and move at the same speed, but we need to validate these theories experimentally.”

Sand dune in experimental flume setup. Credit: University of Cambridge

This is not just a theoretical study. Dune migration is an important process for desertification, which is an increasing threat as global warming continues to take its toll. In the shorter run, moving dunes can threaten shipping channels and infrastructure such as roads and highways.

This is why several research groups are studying dunes, modeling their behavior numerically and understanding the complex processes associated with dune formation and migration.

But numerical data can only get you so far — that’s why Dr. Nathalie Vriend and her lab at Cambridge University designed a unique experimental facility that actually allows them to observe the long-term behavior of dunes.

Communication breakdown

In the latest setup, they mimicked a flume: a man-made water channel with walls raised above the surrounding terrain (as opposed to a ditch, for instance). The circular flume was meant to allow researchers to observe the interaction between dunes.

Credits: University of Cambridge.

“Originally, I put multiple dunes in the tank just to speed up data collection, but we didn’t expect to see how they started to interact with each other,” Bacik said.

When the two identical dunes started out, researchers were expecting them to move in a similar way. The migration speed of dunes is related to their height, so it makes sense to expect them to behave similarly. But they didn’t.

At first, the front dune moved faster, although it did somewhat slow down. As the experiment progressed, the dunes moved apart, until they formed an equilibrium on opposite sides of the circular flume. Their speeds then became quite similar, and they remained on opposite sides of the circle.

“The front dune generates the turbulence pattern which we see on the back dune,” said Vriend. “The flow structure behind the front dune is like a wake behind a boat, and affects the properties of the next dune.”

The next step is to start putting numbers on these processes. Quantitative evidence for such complex mechanisms is never easy to obtain, but researchers want to incorporate field and satellite observations to this purpose. They also want to study how dunes develop in other types of environments, such as dry deserts — where satellite observations will be particularly useful.

The study was accepted for publication in Physical Research Letters.

share Share

How Hot is the Moon? A New NASA Mission is About to Find Out

Understanding how heat moves through the lunar regolith can help scientists understand how the Moon's interior formed.

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.