homehome Home chatchat Notifications


What rocks is the Moon made from?

What's the Moon made from, anyway?

Mihai Andrei
October 20, 2016 @ 5:26 pm

share Share

The geology of the South side of the Moon. Image via USGS.

The Moon has quite an interesting geology, one which we’ll examine in detail below. But if you must have a short answer, the most common lunar rocks appear to be basalts, followed by feldspar-rich anorthosite and breccia. The most common elements on the moon’s surface are oxygen, silicon, iron, and calcium – not very much unlike Earth.

The geology of the Moon

The geology of the Moon is very different to that of the Earth: it has no plate tectonics, there is no atmosphere to contribute to rock weathering, and it has a significantly lower gravity and temperature. However, there are also similarities: the Moon also has a differentiated structure, with a crust, a mantle, and a core.

Image by IqbalMahmud.

The core of the moon is largely an unknown. From gravity and seismic measurements, there is reason to believe that the core is only about 20% the size of the Moon itself, which is much lower than for Earth and other terrestrial bodies. The composition of the lunar core remains a matter of debate, with geophysicists claiming some kind of metallic iron alloyed with a small amount of sulfur and nickel. The mantle is better constrained and highly heterogeneous. Rocks originating in the mantle and currently found on the surface indicate that the mantle is mostly formed of olivine and pyroxenes, silicate minerals commonly found on Earth in igneous rocks originating from the mantle. But the crust – that’s the most interesting thing, because we can observe it directly.

Rocks on the Moon

Six locations were sampled directly during the manned Apollo landings, which brought back 380.96 kilograms (839.9 lb) of lunar rock and soil to Earth. That’s a lot of material to sample, and geologists have analyzed them quite extensively. Many of the returned rocks were basalts, as the surface of the moon itself indicates.

Image by USGS.

If you look at the moon directly, you see lighter and darker areas. The darker parts are the maria, plural for seas in Latin. The maria are basically basaltic seas, products of volcanic processes on the Moon. They represent large basaltic flows. They are similar to terrestrial basalts, but also have significant differences; for example, mare basalts show a large negative europium anomaly. Certain mare basalts also exhibit a large quantity of potassium, unlike those found on Earth. So virtually all of the dark areas you see on the near side of the moon are basalts, and while many scientists were suspecting this even before we had samples, getting the chance to analyze them directly was extremely exciting.

The other, lighter areas are just as intriguing. They are also igneous rocks, but unlike the basalts, which are volcanic, the highland rocks are plutonic. Plutonic means that they crystallized from magma slowly cooling below the surface of the Earth and not rapidly through a volcanic eruption. A large part of the highlands is composed of anorthositean igneous rock characterized by a predominance of plagioclase feldspar (over 90% feldspar). This feldspar is extremely rich in calcium by terrestrial standards, which tells us that at one point, the lunar environment was depleted of alkalis: potassium and sodium. There are also alkali-rich rocks in the lunar highlands (by lunar standards), but they’re not as common. Another part of the highlands is composed of rocks made of a mixture of pyroxene and olivine – minerals originating from the mantle.

An olivine-rich basalt from the Moon.

Anorthosite from the Moon.

Although quite rare, granites can also be found on the moon, likely as a result of particular crystallizations of magmas. Basically, the magmas started cooling and created crystals from some chemical elements, leaving behind other ones which would eventually go on to form the granites.

The moon’s surface is also dominated by huge impact craters. Impact breccias are thought to be diagnostic of an impact event such as an asteroid or comet striking the surface of the moon. When the impact takes place, it creates huge temperatures and pressure which greatly change the properties of existing rocks. Some breccias are highly glassy, formed from impact melt that exit the crater and entrain large volumes of crushed (but not melted) ejecta.

Polarized, thin section of a mare basalt from the Moon.

share Share

Fireball Passes Over Southeastern United States

It’s a bird! It’s a plane! It’s… a bolide!

Paleontologists Discover "Goblin-Like" Predator Hidden in Fossil Collection

A raccoon-sized predator stalked dinosaur nests 76 million years ago.

Climate Change Unleashed a Hidden Wave That Triggered a Planetary Tremor

The Earth was trembling every 90 seconds. Now, we know why.

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

One of Earth’s rarest gems finally reveals its secrets at the Smithsonian.

Scientists Used Lasers To Finally Explain How Tiny Dunes Form -- And This Might Hold Clues to Other Worlds

Decoding how sand grains move and accumulate on Earth can also help scientists understand dune formation on Mars.

Identical Dinosaur Prints Found on Opposite Sides of the Atlantic Ocean 3,700 Miles Apart

Millions of years ago, the Atlantic Ocean split these continents but not before dinosaurs walked across them.

Scientists Tracked a Mysterious 200-Year-Old Global Cooling Event to a Chain of Four Volcanoes

A newly identified eruption rewrites the volcanic history of the 19th century.

Scientists Found Traces of Gold Leaking from Earth’s Core

Traces of ruthenium in Hawaiian lava reveal long-suspected core–mantle leakage.

This beautiful rock holds evidence of tsunamis from 115 million years ago

The waves that shook the world 115 million years ago left behind an amber trail.

Meet Mosura fentoni, the Bug-Eyed Cambrian Weirdo with Three Eyes and Gills in Its Tail

Evolution went strong in this one.