homehome Home chatchat Notifications


First ringwoodite sample confirms huge quantities of water in the Earth's mantle

The first ever terrestrial discovery of ringwoodite seems to confirm the existence of massive amounts of water hundreds of kilometers below the Earth’s surface. Let me explain how. Under pressure Ringwoodite is a high-pressure polymorph of olivine; it’s basically olivine, but with a different crystal structure. The mineral is thought to exist in large quantities […]

Mihai Andrei
March 13, 2014 @ 9:26 am

share Share

The first ever terrestrial discovery of ringwoodite seems to confirm the existence of massive amounts of water hundreds of kilometers below the Earth’s surface. Let me explain how.

Under pressure

Ringwoodite is a high-pressure polymorph of olivine; it’s basically olivine, but with a different crystal structure. The mineral is thought to exist in large quantities in the so-called transition zone, 410km to 660 km deep. Judging by its properties and lab experiments, crystallographers believe that the mineral is restricted between 525 and 660 km deep.

Ringwoodite has been found in meteorites, but until now, no terrestrial sample has ever been unearthed because, well, geologists can’t go 500 km deep underground. However, a University of Alberta diamond scientist has found the first terrestrial sample. The team led by Graham Pearson, Canada Excellence Research Chair in Arctic Resources analyzed this ringwoodite sample and reported that it contains a significant amount of water – 1.5 per cent of its weight. Since this mineral is thought to be found in enormous quantities in the transition zone, that means that the equivalent of all the surface water is found inside the minerals.

“This sample really provides extremely strong confirmation that there are local wet spots deep in the Earth in this area,” said Pearson, a professor in the Faculty of Science, whose findings were published March 13 in Nature. “That particular zone in the Earth, the transition zone, might have as much water as all the world’s oceans put together.”

Interestingly enough, the mineral is notable for being able to contain water within its structure, present not as a liquid but as hydroxide ions (oxygen and hydrogen atoms bound together) . This has huge implications because ringwoodite is thought to be the most abundant mineral phase in the lower part of Earth’s transition zone, so abundant that its properties directly affect those of the mantle – so the existence of water is quite a game changer.

The sample that almost wasn’t

Pearson holding the sample. Remember that the ringwoodite inclusion is a very small part of the sample.

The sample was found in 2008 in the Juina area of Mato Grosso, Brazil, where artisan miners unearthed the host diamond from shallow river gravels. Diamonds are most often associated and brought to the surface by minerals called kimberlites – the most deeply derived of all volcanic rocks. But the discovery itself was almost accidental.

Pearson’s team was looking for something entirely different when they stumbled onto a three-millimetre-wide, dirty-looking, commercially worthless brown diamond. The ringwoodite itself is invisible to the naked eye, and hidden beneath the surface, so it’s a surprise that graduate student, John McNeill, found it in 2009.

“It’s so small, this inclusion, it’s extremely difficult to find, never mind work on,” Pearson said, “so it was a bit of a piece of luck, this discovery, as are many scientific discoveries.”

Three-dimensional confocal μXRF view of two-phase inclusion within the diamond

It took years of analysis and redoing the tests over and over again before it was finally confirmed that the sample is ringwoodite; infrared spectroscopy and X-ray diffraction confirmed this, while the critical water measurements were performed at Pearson’s Arctic Resources Geochemistry Laboratory at the U of A.

A remarkable collaboration

Aside from actually finding the sample, it’s also notable how this study came to fruition. It is a remarkable example of ome of the top leaders from various fields, including the Geoscience Institute at Goethe University, University of Padova, Durham University, University of Vienna, Trigon GeoServices and Ghent University. For Pearson, one of the world’s leading authorities in the study of deep Earth diamond host rocks, this is one of the most notable discoveries in his career, apparently confirming 50 years of theories.

Geophysicists and seismologists have long theoretized that the composition of the transition zone has to feature immense quantities of water, but that was never confirmed – until now. The existence of water in the ringwoodite in the transition zone has immense implications for volcanism and plate tectonics, affecting how rock melts, cools and shifts below the crust.

“One of the reasons the Earth is such a dynamic planet is the presence of some water in its interior,” Pearson concluded. “Water changes everything about the way a planet works.”

Journal Reference:

  1. D. G. Pearson, F. E. Brenker, F. Nestola, J. McNeill, L. Nasdala, M. T. Hutchison, S. Matveev, K. Mather, G. Silversmit, S. Schmitz, B. Vekemans, L. Vincze.Hydrous mantle transition zone indicated by ringwoodite included within diamondNature, 2014; 507 (7491): 221 DOI: 10.1038/nature13080

share Share

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.

Worms and Dogs Thrive in Chernobyl’s Radioactive Zone — and Scientists are Intrigued

In the Chernobyl Exclusion Zone, worms show no genetic damage despite living in highly radioactive soil, and free-ranging dogs persist despite contamination.