ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Geology

NASA rover will investigate liquid-carved gully on Mars

The little rover that could.

Mihai AndreibyMihai Andrei
October 12, 2016
in Astronomy, Geology, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

We’ve talked so much about the Curiosity rover, but NASA’s Opportunity rover is also doing work on Mars. Now, the rover will drive down a gully potentially carved by water not so long ago.

This scene from NASA’s Mars Exploration Rover Opportunity shows “Wharton Ridge,” which forms part of the southern wall of “Marathon Valley” on the western rim of Endeavour Crater. Image via NASA/JPL.

Why the gully matters

A gully is a landform commonly found on Earth, typically on hillsides. They look a lot like ditches or small valleys but are metres to tens of metres in depth and width. They’re created by running water (or other fluids, in some cases) eroding sharply into the hillside.

While other fluids can also create gullies, it’s almost always water. So when you see a gully in whatever environment, you can generally assume the presence of running water. Gullies are widespread at mid- to high latitudes on the surface of Mars, and are some of the youngest features observed on that planet, probably forming within the last few 100,000 years – therefore, we can assume the presence of water in the past 100,000 years on Mars and this is pretty exciting. Geologists are still debating whether these gullies indicate rivers, melting snow or simply precipitations, but they do agree that they are a strong indicator of water. Now, for the first time, the Opportunity rover will get the chance to observe one from close range.

This gully is more easy to see (from the Saratov Oblast, Russia). Image by Le Loup Gris.

The gully which Opportunity will study measures two football fields in surface and is situated on the bottom of a crater.

“We are confident this is a fluid-carved gully, and that water was involved,” said Opportunity Principal Investigator Steve Squyres of Cornell University, Ithaca, New York. “Fluid-carved gullies on Mars have been seen from orbit since the 1970s, but none had been examined up close on the surface before. One of the three main objectives of our new mission extension is to investigate this gully. We hope to learn whether the fluid was a debris flow, with lots of rubble lubricated by water, or a flow with mostly water and less other material.”

The rover will not only take pictures but also analyze the chemical make-up of the rocks in the area, for comparison with other rocks found in and around the crater.

“We may find that the sulfate-rich rocks we’ve seen outside the crater are not the same inside,” Squyres said. “We believe these sulfate-rich rocks formed from a water-related process, and water flows downhill. The watery environment deep inside the crater may have been different from outside on the plain — maybe different timing, maybe different chemistry.

A fantastic opportunity

The Opportunity rover landed on Mars on January 25, 2004, three weeks after its twin Spirit (MER-A) touched down on the other side of the planet. It was supposed to run for 90 days – no more than that – and yet here it is, more than a decade later, still providing valuable information about the Red Planet.

RelatedPosts

NASA’s new 2020 rover will look a lot like Curiosity but with some important tweaks
Martian minerals might bear signatures of ancient life
Algae and bacteria will provide oxygen for astronauts living on Mars
Halos on Mars suggest the red planet may have been hospitable for far long longer than thought

“We have now exceeded the prime-mission duration by a factor of 50,” noted Opportunity Project Manager John Callas of NASA’s Jet Propulsion Laboratory, Pasadena, California. “Milestones like this are reminders of the historic achievements made possible by the dedicated people entrusted to build and operate this national asset for exploring Mars.”

In the two year extended missions that the rover has been carrying out recently, it analyzed the “Marathon Valley” area of Endeavour’s western rim, documenting the geological context of water-related minerals that had been mapped there from orbital observations.

Tags: gullyMarsopportunityrover

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Alien life

This Bizarre Martian Rock Formation Is Our Strongest Evidence Yet for Ancient Life on Mars

byMihai Andrei
3 days ago
This image taken by the European Space Agency's Mars Express orbiter shows an oblique view focusing on one of the vast lava flows in Elysium Planitia. Image credits: ESA/DLR/FU Berlin.
Geology

Mars Seems to Have a Hot, Solid Core and That’s Surprisingly Earth-Like

byMihai Andrei
6 days ago
Mars high resolution image. Mars is a planet of the solar system. Sunrise with lens flare. Elements of this image furnished by NASA.
Geology

Scientists May Have Found a New Mineral on Mars. It Hints The Red Planet Stayed Warm Longer

byTibi Puiu
4 weeks ago
News

First Complete Picture of Nighttime Clouds on Mars

bySarah Stanley
1 month ago

Recent news

How Bees Use the Sun for Navigation Even on Cloudy Days

September 12, 2025

Scientists Quietly Developed a 6G Chip Capable of 100 Gbps Speeds

September 12, 2025

When Ice Gets Bent, It Sparks: A Surprising Source of Electricity in Nature’s Coldest Corners

September 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.