homehome Home chatchat Notifications


The Martian Polygons - An evidence for former Seafloors?

Intricate polygons on Mars could be a clear indication of a wet past for the Red Planet. Most crater floor polygons have diameters ranging from 15 to 350 m, and it’s still not clear how and why they appeared – though one theory seems to be gaining ground: the idea of former lake beds. Polygons […]

Mihai Andrei
November 4, 2014 @ 2:16 am

share Share

Intricate polygons on Mars could be a clear indication of a wet past for the Red Planet. Most crater floor polygons have diameters ranging from 15 to 350 m, and it’s still not clear how and why they appeared – though one theory seems to be gaining ground: the idea of former lake beds.

Water on Mars

Image 1. Typical crater floor polygons. [A] CTX (a 6 meter/pixel camera onboard the Mars Reconnaissance Orbiter, P16_007372_2474).of a 14 km‐sized impact crater

Polygons are some of the most common features at high latitudes on Mars. They have been observed by both lander and orbiting spacecraft. They range in size from 2 m all the way up to 10 km, and there is still an ongoing debate regarding their formation. Proposed mechanisms include thermal contraction, desiccation, volcanic, and tectonic processes; the polygons also bear similar resemblance to polygons observed on Earth, which took shape on the seafloor.

In 2000, an analytical model based on fracture mechanics (El Maarry et al., 2010) showed that through thermal changes alone (no water), the maximum fracture spacing attainable is 75 meters, with more probable values revolving around 20 meters – so this is clearly not the cause here. Also, no exact tectonic processes which can cause such formations have been identified – so the only plausible possibility left is a former sea floor.

On Earth, polygon-shaped areas, with the edges formed by faults, are common in fine-grained deep-sea sediments. Some of the best examples of these polygon-fault areas are found in the North Sea and the Norwegian Sea. We know this because the areas have been thoroughly surveyed through seismic techniques for offshore oil and gas deposits. While they are diverse and intricate, all polygons seem to have one thing in common – form in a common environment: sediments made up of fine-grained clays in ocean basins that are deeper than 500 meters, and when these sediments are only shallowly buried by younger sediments. The slope angle of the seafloor also plays a crucial role: when the slope is very gentle (or non existent), the shape of the polygons tends to remain unchanged. However, when there is some positive or negative topography, the shapes are often altered or broken down.

So if this is indeed the case on Mars (and there’s little reason why it shouldn’t be), it seems pretty clear that we’re dealing not only with a water body, but with a water body which was at least half a kilometer deep. Furthermore, the variation of crater floor polygons sizes with location can be indicative of different hydrologic environments. So not only was there likely water on Mars – but it was likely a big and complex system.

share Share

We Should Start Worrying About Space Piracy. Here's Why This Could be A Big Deal

“We are arguing that it’s already started," say experts.

The most successful space telescope you never heard of just shut down

An astronomer says goodbye to Gaia, the satellite that mapped the galaxy.

Astronauts are about to grow mushrooms in space for the first time. It could help us live on Mars

Mushrooms could become the ultimate food for living in colonies on the moon and Mars.

Earth’s Longest Volcanic Ridge May Be an Underwater Moving Hotspot

Scientists uncover surprising evidence that the Kerguelen hotspot, responsible for the 5,000-kilometer-long Ninetyeast Ridge, exhibited significant motion.

Dark Energy Might Be Fading and That Could Flip the Universe’s Fate

Astronomers discover hints that the force driving cosmic expansion could be fading

Curiosity Just Found Mars' Biggest Organic Molecules Yet. It Could Be A Sign of Life

The discovery of long-chain organic compounds in a 3.7-billion-year-old rock raises new questions about the Red Planet’s past habitability.

Astronomers Just Found Oxygen in a Galaxy Born Only 300 Million Years After the Big Bang

The JWST once again proves it might have been worth the money.

New NASA satellite mapped the oceans like never before

We know more about our Moon and Mars than the bottom of our oceans.

Astronauts Who Spent 286 Extra Days in Space Earned No Overtime. But They Did Get a $5 a Day "Incidentals" Allowance

Astronauts in space have the same benefits as any federal employee out on a business trip.

How to Build the World’s Highest Mountain

The rocks of Mount Everest’s peak made an epic journey from seafloor to summit.