homehome Home chatchat Notifications


Giant landslides on Saturn's icy moon intrigues scientists

Planetary scientist Kelsi Singer initially studied satellite photographs of  Saturn’s icy moon Iapetus’ surface looking for stress fractures in the moon’s ice, what she found in process however was far more interesting. Huge landslides, stretching across tens of miles across the moon’s surface were observed, not in one, but multiple locations, hinting this is a common phenomenon […]

Tibi Puiu
July 30, 2012 @ 7:54 am

share Share

A giant landslide on Iapetus reaches halfway across a 75-mile (120 kilometer) impact crater.(c) NASA/JPL/Space Science Institute

A giant landslide on Iapetus reaches halfway across a 75-mile (120 kilometer) impact crater.(c) NASA/JPL/Space Science Institute

Planetary scientist Kelsi Singer initially studied satellite photographs of  Saturn’s icy moon Iapetus’ surface looking for stress fractures in the moon’s ice, what she found in process however was far more interesting. Huge landslides, stretching across tens of miles across the moon’s surface were observed, not in one, but multiple locations, hinting this is a common phenomenon on the ice covered satellite. Very broad landslides have been recorded on Earth as well, although nowhere near this magnitude, and the study at hand might serve to hint towards the mechanisms involved in these natural formations.

Iapetus is one of the oddest cosmic bodies in the solar system. Barren, cold and mostly covered in very thick ice, the satellite presents a highly rugged terrain, with ridges that can reach as much as 12 miles in height or two times the altitude of Mount Everest. Like the ubiquitous yin-yang, the moon’s surface is half covered in darkness, while the other side is much brighter. Moreover, it has the most eccentric geometry out of all the solar system’s planets or moons, made evident by a mountainous ridge that bulges out at its equator – this is why it’s commonly referred to as the “walnut”.

Iapentu's eccentric topography

Iapentu’s eccentric topography

Because of this incredibly odd topography, Iapetus  has more giant landslides than any Solar System body other than Mars. So far, evidence of 30 massive landslides have been found – 17 along crater walls and 13 along the giant equatorial ridge, however even more might be encountered if an exhaustive observation were to be performed.

“Not only is the moon out-of-round, but the giant impact basins are very deep, and there’s this great mountain ridge that’s 20km (12 miles) high, far higher than Mount Everest,” explained Prof William McKinnon, also from Washington University,.

“So there’s a lot of topography and it’s just sitting around, and then, from time to time, it gives way.”

The icy landslides are similar to long-runout landslides on Earth known as sturzstroms (German for fallstreams) – massive landslides can move up 20 to 30 times the height they fall from. Typically, on Earth, conventional landslides only travel around two times the height they fall from.

Apparently, the mechanism that governs the formation of these massive landslides, on Iapetus or here on Earth, has yet to reach an consensus from scientists. Various theories have been suggested from  riding on a cushion of trapped air, to sliding on groundwater or mud, to sliding on ice, or slipping caused by strong acoustic vibrations.

According to Singer, a graduate student in earth and planetary sciences at Washington University in St. Louis and lead author of the paper presently discussed, the massive landslides most likely  occur by frictional heating of the ice. Since it doesn’t have an atmosphere, the coefficient of friction – a measure of how much the slip-sliding of material in a landslide tends to slow it down – on Iapetus is far lower than expected for ice.

Despite the ice on Iapetus is as a solid as rock, scientists hypothesize that  tiny contact points between bits of ice debris in such a landslide may heat up considerably,leading to a thin layer of ice crystals that melts. This might cause the huge landslides on Saturn’s icy moon, but could also serve to explain how sturzstroms form on Earth.

“The landslides on Iapetus are a planet-scale experiment that we cannot do in a laboratory or observe on Earth,” Ms Singer said.

“They give us examples of giant landslides in ice, instead of rock, with a different gravity, and no atmosphere. So any theory of long-runout landslides on Earth must also work for avalanches on Iapetus.”

The findings were reported in the journal  Nature Geoscience

share Share

We Should Start Worrying About Space Piracy. Here's Why This Could be A Big Deal

“We are arguing that it’s already started," say experts.

The most successful space telescope you never heard of just shut down

An astronomer says goodbye to Gaia, the satellite that mapped the galaxy.

Astronauts are about to grow mushrooms in space for the first time. It could help us live on Mars

Mushrooms could become the ultimate food for living in colonies on the moon and Mars.

Earth’s Longest Volcanic Ridge May Be an Underwater Moving Hotspot

Scientists uncover surprising evidence that the Kerguelen hotspot, responsible for the 5,000-kilometer-long Ninetyeast Ridge, exhibited significant motion.

Dark Energy Might Be Fading and That Could Flip the Universe’s Fate

Astronomers discover hints that the force driving cosmic expansion could be fading

Curiosity Just Found Mars' Biggest Organic Molecules Yet. It Could Be A Sign of Life

The discovery of long-chain organic compounds in a 3.7-billion-year-old rock raises new questions about the Red Planet’s past habitability.

Astronomers Just Found Oxygen in a Galaxy Born Only 300 Million Years After the Big Bang

The JWST once again proves it might have been worth the money.

New NASA satellite mapped the oceans like never before

We know more about our Moon and Mars than the bottom of our oceans.

Astronauts Who Spent 286 Extra Days in Space Earned No Overtime. But They Did Get a $5 a Day "Incidentals" Allowance

Astronauts in space have the same benefits as any federal employee out on a business trip.

How to Build the World’s Highest Mountain

The rocks of Mount Everest’s peak made an epic journey from seafloor to summit.