homehome Home chatchat Notifications


Dinosaur wipeout caused by comet, not asteroid - new study finds

The current leading theory that explains the mass extinction of the dinosaurs – once the dominant group of animals on Earth for millions of years – states that an asteroid impact some 65 million years ago brought their demise, wiping them out along with 70% of all life on the planet. A new study, however, […]

Tibi Puiu
March 25, 2013 @ 5:15 am

share Share

comet-impact-earth

The current leading theory that explains the mass extinction of the dinosaurs – once the dominant group of animals on Earth for millions of years – states that an asteroid impact some 65 million years ago brought their demise, wiping them out along with 70% of all life on the planet. A new study, however, suggests based on sedimentary analysis that the cosmic body that impacted Earth at the time may have been a comet, not an asteroid.

The site of the impact size was previously identified as being the 180 kilometers wide Chicxulub crater in Mexico. Scientists believe that a slow-moving, large asteroid created this crater, however a recent investigation that looked at other telltale signs of the impact in the Earth’s sedimentary layers suggests that the cosmic body was actually a fast-moving, low mass rock – most likely a comet.

This conclusion came after the researchers found a discrepancy in the levels of iridium and osmium. These two elements can be found on the same worldwide layer of sediments, called the Cretaceous-Paleogene (K-Pg) boundary, and have been found to reside in much greater concentrations than those of other sedimentary layers, meaning they must have come from outer space.  After comparing the two, the scientists suggest the collision deposited less debris than has previously been supposed.

So, this means that the cosmic body had a much smaller mass than it is currently believed. At the same time, the huge 180 km-wide crater in Mexico could have only been created by a high velocity impact in order for the same amount of energy to be displaced. Comets, which are huge bodies of ice, dust and rocky particles, become thus the likeliest candidates since they travel at faster velocities than asteroids through the solar system.

“You’d need an asteroid of about 5km diameter to contribute that much iridium and osmium. But an asteroid that size would not make a 200km-diameter crater,” said ” Jason Moore, from Dartmouth College in New Hampshire.

“So we said: how do we get something that has enough energy to generate that size of crater, but has much less rocky material? That brings us to comets.”

A comet instead of an asteroid?

The findings however are far form being solid, and as one can imagine the study was met with skepticism by the geology and paleontology scientific community.

 “There’s a possibility that a lot of the impacted material could have been ejected at escape velocity, so we couldn’t find it on Earth,” said  physicist Brandon Johnson of Purdue University, who was not involved in the research.

Geologist Gareth Collins of Imperial College London, U.K., agreed. “Geochemistry tells you — quite accurately — only the mass of meteoritic material that is distributed globally, not the total mass of the impactor,” Collins said, adding, “To estimate the latter, one needs to know what fraction of the impactor was distributed globally, as opposed to being ejected to space or landing close to the crater.”

The findings presented by the team lead by Dr. Moore rest on a rather fragile string. At the basis of their conclusions lies this previously mentioned correlation between the displaced debris and cosmic rock size. Collins believes that the debris distributed on Earth could have been less than 20% of the body’s mass, instead of 75% as the comet impact favoring researchers presume. In response, the authors  cite recent studies suggesting mass loss for the Chicxulub impact was between 11% and 25%.

The findings were presented at the 44th Lunar and Planetary Science Conference.

share Share

This strange rock on Mars is forcing us to rethink the Red Planet’s history

A strange rock covered in tiny spheres may hold secrets to Mars’ watery — or fiery — past.

Your Gum Is Shedding Microplastics into Your Saliva

One gram of chewing gum can release up to 600 microplastic particles into your body.

Earth’s Longest Volcanic Ridge May Be an Underwater Moving Hotspot

Scientists uncover surprising evidence that the Kerguelen hotspot, responsible for the 5,000-kilometer-long Ninetyeast Ridge, exhibited significant motion.

How to Build the World’s Highest Mountain

The rocks of Mount Everest’s peak made an epic journey from seafloor to summit.

What's Behind the 'Blood Rain' That Turned This Iranian Shoreline Crimson

The island's unique geology is breathtaking.

The Arctic Seafloor Is Full of Life — And We’re About to Destroy It

The Arctic Ocean is more than just icy waters, it harbors vibrant ecosystems — but it also harbors valuable oil, gas, and rare earth elements.

Megalodon Wasn’t a Fat Great White—It Was a Sleek Lean Killing Machine

Looks like the movies got it wrong; who would have guessed?

Earth's Oldest Meteorite Crater Dating Back 3.47 Billion Years Found in Australia’s outback

The find could hold implications for understanding the origin of life here on Earth.

Marsquake Waves Are Moving Faster Than They Should and It's Not Clear Why

There seems to be much more we don't know about marsquakes and Martian geology.

Climate change is about to erase $1.4 trillion in real estate value in the US

Homeownership is becoming increasingly unsustainable in high-risk areas as wildfires, floods, and hurricanes drive up insurance costs.