homehome Home chatchat Notifications


Largest deep earthquake ever recorded still baffles seismologists

A magnitude 8.3 earthquake that struck deep beneath the Sea of Okhotsk on May 24, 2013 still poses a lot of questions to geophysicists. At a depth of about 609 kilometers (378 miles), the kind of rupture which generates an earthquake of this magnitude should just not happen. The vast majority of significant earthquakes takes […]

Mihai Andrei
September 24, 2013 @ 10:57 am

share Share

A magnitude 8.3 earthquake that struck deep beneath the Sea of Okhotsk on May 24, 2013 still poses a lot of questions to geophysicists. At a depth of about 609 kilometers (378 miles), the kind of rupture which generates an earthquake of this magnitude should just not happen.

earthquake 1

The vast majority of significant earthquakes takes place on shallow depths, usually when at the boundary of two or more tectonic plates – those of course, are the most unstable area. If you correlate a map of tectonic plates with a map of the recent earthquakes at any given time, you’ll find that the vast majority are clustered around those areas. Earthquake also occur at major faults, which are also relatively shallow (in the crust).

Intermediary earthquakes have the focus between 70 (or 40, depending on who you listen to) and 300 km; and deep earthquakes take place at over 300 km depth. Of course, there can be no tectonic boundaries and faults at that depth – we’re talking mantle here.

The cause of deep focus earthquakes is still not entirely understood since subducted lithosphere at that pressure and temperature regime should not exhibit brittle behavior. Probably the most discussed possibility is a mineral transition, like for example olivine undergoing a phase transition into a spinel structure. Still, they may still be influenced by crustal tectonics, and most specifically by what is called the Wadati–Benioff zone.

earthquake

But at these depths, with huge temperatures and pressures, you wouldn’t typically expect such big earthquakes.

“It’s a mystery how these earthquakes happen. How can rock slide against rock so fast while squeezed by the pressure from 610 kilometers of overlying rock?” said Thorne Lay, professor of Earth and planetary sciences at the University of California, Santa Cruz.

Deep earthquakes occur in the transition zone between the upper mantle and lower mantle and are not usually dangerous for humans, but yield very valuable scientific information. As for the Sea of Ohotsk earthquake, it has some very strange characteristics.

“It looks very similar to a shallow event, whereas the Bolivia earthquake ruptured very slowly and appears to have involved a different type of faulting, with deformation rather than rapid breaking and slippage of the rock,” Lay said.

The precise mechanism for initiating shear fracture under the huge pressure at that depth remains unclear, and unlikely to be solved in the nearby future.

“If the fault slips just a little, the friction could melt the rock and that could provide the fluid, so you would get a runaway thermal effect. But you still have to get it to start sliding,” Lay said. “Some transformation of mineral forms might give the initial kick, but we can’t directly detect that. We can only say that it looks a lot like a shallow event.”

Journal Reference:
L. Ye, T. Lay, H. Kanamori, K. D. Koper. Energy Release of the 2013 Mw 8.3 Sea of Okhotsk Earthquake and Deep Slab Stress Heterogeneity. Science, 2013; 341 (6152): 1380 DOI: 10.1126/science.1242032

share Share

Earth’s Longest Volcanic Ridge May Be an Underwater Moving Hotspot

Scientists uncover surprising evidence that the Kerguelen hotspot, responsible for the 5,000-kilometer-long Ninetyeast Ridge, exhibited significant motion.

How to Build the World’s Highest Mountain

The rocks of Mount Everest’s peak made an epic journey from seafloor to summit.

What's Behind the 'Blood Rain' That Turned This Iranian Shoreline Crimson

The island's unique geology is breathtaking.

Megalodon Wasn’t a Fat Great White—It Was a Sleek Lean Killing Machine

Looks like the movies got it wrong; who would have guessed?

Earth's Oldest Meteorite Crater Dating Back 3.47 Billion Years Found in Australia’s outback

The find could hold implications for understanding the origin of life here on Earth.

Marsquake Waves Are Moving Faster Than They Should and It's Not Clear Why

There seems to be much more we don't know about marsquakes and Martian geology.

Scientists Say a Sixth Ocean Is Forming as East Africa Splits Apart

In East Africa, tectonic forces are slowly splitting the continent, creating a future ocean basin.

Seemingly sudden earthquakes may be preceded by a slow creep. Could this be the key to earthquake prediction?

Scientists have discovered a subtle, slow-moving creep in lab experiments that could hold the key to predicting catastrophic earthquakes before they strike.

Punk and Emo in Prehistoric Seas: Fossils Rewrite Mollusk Evolution

Put the My Chemical Romance mixtape on. It's time.

“Stonehenge of the East” has been quietly moving for thousands of years deepening the mystery of its purpose

Tectonic forces add a new twist to the mystery of Rujm el-Hiri’s concentric circles.