homehome Home chatchat Notifications


Broadband equipment could be used to study faults and other geological features

Cables could do much more than offer you internet.

Mihai Andrei
July 3, 2018 @ 6:02 pm

share Share

Fiber-optic cables may do more than give you good internet and television — they might be able to provide much needed geological information.

Image credits: Credit: Philippe Jousset.

We might not realize it, but on average, there’s about one earthquake of magnitude 7 or greater somewhere around the globe every month. The reason many of these earthquakes go largely unnoticed is that they occur in remote locations. But when big earthquakes happen near an urban center, it can cause dramatic damage.

Understanding how and when these damaging earthquakes happen is critical for mitigating their effects, but if we want to understand them, we must first understand the geological setting which produces them, and that’s no easy feat. Seismometers can accurately detect the velocity, or acceleration, of the ground surface and help map the fault systems, but this type of data only provides scant observations. Having long-term, dense monitoring stations is extremely expensive. Even the densest seismic networks in the world typically do not have more than one sensor every ~20 km, which can cost hundreds of thousands of dollars or more each year to operate and maintain. For a developing country, this is prohibitively expensive, and even for developed nations, the costs rake up dramatically. But what if we could use something else as sensors — something that’s already installed in many places?

Testing the repurposed cables with some man-made vibrations — a hammer smashed on a metal plate (a technique commonly used in seismic studies). Image credits: Philippe Jousset.

With this in mind, Philippe Jousset and colleagues set up an experiment in Iceland where fiber-optic cables were transformed into a series of sensors to record natural and man-made seismic waves. They found that, although the method still needs refining, the sensors are able to quantify even small strains and displacements. The authors note that the cables not only record seismic signals but were able to resolve (in surprising detail) the surrounding geological structures at depth.

So with a bit of repurposing, already-existing broadband cables could be used as everyday seismic sensors.

Ultimately, this unconventional usage of infrastructure could be applied to a wide array of geological studies. Researchers envision that this technology could benefit volcano monitoring, seismic hazard assessment, landslide monitoring, and global seismology — by using transatlantic optical cables.

Jousset and colleagues aren’t the only ones thinking about this. In a recently-published paper, a different team described a somewhat similar approach: they’ve used transoceanic underwater cables as seismometers. Certainly, this idea has potential, and there are high hopes that it will be fruitfully applied in the future..

The study, “Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features,” has been published in Nature Communications.

share Share

How Hot is the Moon? A New NASA Mission is About to Find Out

Understanding how heat moves through the lunar regolith can help scientists understand how the Moon's interior formed.

New tools enable companies to improve the sustainability of their products

There’s no shortage of environmental crises. Whether it’s climate change, plastic pollution, or simply our mounting waste, we just produce too much stuff — and then throw it away. There’s no silver bullet or magic tool that can solve everything. We need societal changes, better regulation, and more responsible companies. In a new study, a […]

America’s Favorite Christmas Cookies in 2024: A State-by-State Map

Christmas cookie preferences are anything but predictable.

Worms and Dogs Thrive in Chernobyl’s Radioactive Zone — and Scientists are Intrigued

In the Chernobyl Exclusion Zone, worms show no genetic damage despite living in highly radioactive soil, and free-ranging dogs persist despite contamination.

The 2,500-Year-Old Gut Remedy That Science Just Rediscovered

A forgotten ancient clay called Lemnian Earth, combined with a fungus, shows powerful antibacterial effects and promotes gut health in mice.

Should we treat Mars as a space archaeology museum? This researcher believes so

Mars isn’t just a cold, barren rock. Anthropologists argue that the tracks of rovers and broken probes are archaeological treasures.

Hidden for Centuries, the World’s Largest Coral Colony Was Mistaken for a Shipwreck

This massive coral oasis offers a rare glimmer of hope.

This Supermassive Black Hole Shot Out a Jet of Energy Unlike Anything We've Seen Before

A gamma-ray flare from a black hole 6.5 billion times the Sun’s mass leaves scientists stunned.

This New Catalyst Can Produce Ammonia from Air and Water at Room Temperature

Forget giant factories! A new portable device could allow farmers to produce ammonia right in the field, reducing costs, and emissions.

Scientists Say Antimatter Rockets Could Get Us to the Stars Within a Lifetime — Here’s the Catch

The most explosive fuel in the universe could power humanity’s first starship.