homehome Home chatchat Notifications


Researchers identify gene that makes plants and fungi play nice -- we'll use it to make better crops

"The resulting plants would grow larger and need less water and fertilizer, for instance," say the authors.

Alexandru Micu
July 22, 2019 @ 11:36 pm

share Share

Researchers at the Department of Energy’s Oak Ridge National Laboratory (ORNL) are hacking the plant-fungi relationship to help us grow better, more productive, more resilient crops.

Mushroom.

Image credits Gustavo Torres.

The team has identified a specific gene that controls the symbiotic relationship between plants and fungi in the soil and used it to facilitate symbiosis in a plant species that typically resists such fungi. The research paves the way towards the development of food and bioenergy crops that can withstand harsh growing conditions, resist pathogens and pests, require less chemical fertilizer, and produce more plentiful per acre.

Magic ‘shrooms

“If we can understand the molecular mechanism that controls the relationship between plants and beneficial fungi, then we can start using this symbiosis to acquire specific conditions in plants such as resistance to drought, pathogens, improving nitrogen and nutrition uptake and more,” said ORNL molecular geneticist Jessy Labbe, the paper’s first author.

“The resulting plants would grow larger and need less water and fertilizer, for instance.”

The fungi Labbe refers to are known as mycorrhizal fungi (a mycorrhiza is a symbiotic association between a fungus and a plant), and they form a sheath around plant roots that benefits both participants. An estimated 80% of plant species have mycorrhizal fungi associated with their roots.

The plant receives water and raw minerals, particularly phosphorus, and ‘trades’ carbon-rich compounds in return. The fungal structure extends much farther than the plant host’s roots, allowing it to tap into a larger volume of soils. There is also some evidence suggesting these fungi also communicate with neighboring plants to limit the spread of pathogens and pests.Their relationship is so close that these fungal helpers may have been what allowed the ancient colonization of land by plants.

Given the importance of this partnership, biologists have been really eager to find the genetic mechanisms which underpin it. The current discovery is the culmination of 10 years of research at the ORNL and partner institutions that focused on producing better bioenergy feedstock crops such as the poplar tree (Populus).

Together with improvements in genomic sequencing, quantitative genetics, and high-performance computing over the last decades, the team drew on the ORNL data to narrow down the search to a particular receptor protein, PtLecRLK1. Once they had identified the likely candidate gene, the researchers took to the lab to validate their findings. Lab testing later confirmed that they were onto the right gene.

The researchers chose Arabidopsis, a plant known to treat the mycorrhizal fungus L. bicolor as a threat for the experiments. They engineered a version of this plant to expresses the PtLecRLK1 protein and then inoculated the plants with L. bicolor. The fungus completely enveloped the plant’s root tips, they report, forming a fungal sheath indicative of symbiote formation.

“We showed that we can convert a non-host into a host of this symbiont,” said ORNL quantitative geneticist Wellington Muchero, a co-author of the paper. If we can make Arabidopsis interact with this fungus, then we believe we can make other biofuel crops like switchgrass, or food crops like corn also interact and confer the exact same benefits. It opens up all sorts of opportunities in diverse plant systems. Surprisingly, one gene is all you need.”

Jerry Tuskan, the director of the DOE’s Center for Bioenergy Innovation (CBI), which supported this research, calls the results “remarkable”, saying it paves the way towards new bioenergy crops that can thrive “on marginal, non-agricultural lands.”

“We could target as much as 20-40 million acres of marginal land with hardy bioenergy crops that need less water, boosting the prospects for successful rural, biobased economies supplying sustainable alternatives for gasoline and industrial feedstocks,” he concludes.

The paper “Mediation of plant–mycorrhizal interaction by a lectin receptor-like kinase” has been published in the journal Nature Plants.

share Share

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

Beetles Conquered Earth by Evolving a Tiny Chemical Factory

There are around 66,000 species of rove beetles and one researcher proposes it's because of one special gland.

We Should Start Worrying About Space Piracy. Here's Why This Could be A Big Deal

“We are arguing that it’s already started," say experts.

An Experimental Drug Just Slashed Genetic Heart Risk by 94%

One in 10 people carry this genetic heart risk. There's never been a treatment — until now.

We’re Getting Very Close to a Birth Control Pill for Men

Scientists may have just cracked the code for male birth control.

A New Antibiotic Was Hiding in Backyard Dirt and It Might Save Millions

A new antibiotic works when others fail.

Researchers Wake Up Algae That Went Dormant Before the First Pyramids

Scientists have revived 7,000-year-old algae from Baltic Sea sediments, pushing the limits of resurrection ecology.

A Fossil So Strange Scientists Think It’s From a Completely New Form of Life

This towering mystery fossil baffled scientists for 180 Years and it just got weirder.

ChatGPT Seems To Be Shifting to the Right. What Does That Even Mean?

ChatGPT doesn't have any political agenda but some unknown factor is causing a subtle shift in its responses.