homehome Home chatchat Notifications


New, free app modifies antibiotics to work against drug-resistant infections

"There's an app for that" has never been more relevant.

Alexandru Micu
November 18, 2019 @ 6:47 pm

share Share

A new web tool could help us find novel antibiotics that work against Gram-negative bacteria (which tend to gain antibiotic resistance). The app works by offering instructions on converting drugs that kill other bacteria into compounds that work against Gram-negative strains.

Image credits Sheep purple / Flickr.

Gram-negative bacteria have an extra, outer membrane, that renders most antibiotics useless. It helps the bacteria to survive out in nature where many organisms (like fungi) naturally produce antibiotics. This would be fine except for the fact that some Gram-negative bacteria like to cause nasty infections in humans — which don’t respond to treatment and put patients at risk. In order to prove that their tool works, the team used it to modify a drug and successfully tested it against three different Gram-negative bacterial strains.

Computer, design a drug

It’s really hard to find new antibiotics for Gram-negative pathogens, because these bacteria have an extra membrane, an outer membrane, that’s very good at keeping antibiotics out,” said University of Illinois chemistry professor Paul Hergenrother, who led the research.

Hergenrother explains that no new antibiotics against Gram-negative bacteria have been approved by the Food and Drug Administration in 50 years, leaving us virtually exposed to the pathogens. His team has been hard at work finding a solution for several years now. His team “discovered the molecular features that allowed an antibiotic compound to surpass this barrier” a few years ago, he said, adding that this tool is the implementation of those findings.

The team’s app/web tool is called eNTRyway, and evaluates the potential of known drug compounds to pierce the outer membrane of Gram-negative bacteria. It also estimates whether the drug can perform this at high enough levels to accumulate inside the bacterial cells in functional doses. Even better, this app can also point out how to modify existing drugs for the task of tackling Gram-negative pathogens.

The team used eNTRyway to identify a drug that’s currently in use against Gram-positive infections that, with a little bit of tweaking, could potentially hurt Gram-negative strains. The team then synthesized the drug (by adding an amine group to the original one) and tested it on Gram-negative infections in mice. It proved effective against several different strains, the team reports, successfully accumulating behind the outer membrane of these pathogens.

The whole process took only a few weeks, Hergenrother said. The team hopes that their app will greatly speed up the development of such drugs in the future.

“We can use this tool to rapidly identify compounds that accumulate in Gram-negative bacteria,” he said.

“Keep in mind that before this, over 100 derivatives of this same compound had been made. We found them in patents and papers,” he said. “And none of these other derivatives had notable Gram-negative activity.”

The team went on to identify over 60 antibiotics that could be converted to fight Gram-negative bacteria using a variety of chemical pathways. For example, one of their newly-developed drugs (christened Debio-1452-NH3) disturbs fatty acid synthesis in bacterial cells, but not in mammalian ones.

The paper “Implementation of permeation rules leads to a FabI inhibitor with activity against Gram-negative pathogens” has been published in the journal Nature Microbiology.

share Share

A Dutch 17-Year-Old Forgot His Native Language After Knee Surgery and Spoke Only English Even Though He Had Never Used It Outside School

He experienced foreign language syndrome for about 24 hours, and remembered every single detail of the incident even after recovery.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.

Westerners cheat AI agents while Japanese treat them with respect

Japan’s robots are redefining work, care, and education — with lessons for the world.

Scientists Turn to Smelly Frogs to Fight Superbugs: How Their Slime Might Be the Key to Our Next Antibiotics

Researchers engineer synthetic antibiotics from frog slime that kill deadly bacteria without harming humans.

This Popular Zero-Calorie Sugar Substitute May Be Making You Hungrier, Not Slimmer

Zero-calorie sweeteners might confuse the brain, especially in people with obesity

Any Kind of Exercise, At Any Age, Boosts Your Brain

Even light physical activity can sharpen memory and boost mood across all ages.

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

Beetles Conquered Earth by Evolving a Tiny Chemical Factory

There are around 66,000 species of rove beetles and one researcher proposes it's because of one special gland.