homehome Home chatchat Notifications


The 'forager gene' of humans and fruit flies works in practically the same way

No time like mealtime.

Alexandru Micu
February 20, 2019 @ 7:02 pm

share Share

An international team of researchers reports that a gene humans and fruit flies share has a similar effect on their behavior. The same gene is found in many species across the world, likely acting in a similar way.

Sparrows.

Image via Pixabay.

This might seem ludicrous, but there was a time in which humans couldn’t go to the grocery store to get food. In those dark times, we had to forage our way into a meal. New research shows that one gene with significant impact on foraging behavior in fruit flies (Drosophila melanogaster) has a similar effect on our own foraging strategies.

Will search for food

The team, which includes researchers from Canada, the U.K., and the U.S. has found that a gene known as PRKG1 — which is present in a wide range of species — can dictate whether individuals are “assessors” or “locomotors” when foraging for food.

The team worked with a group of college volunteers, who were asked to play a video game on a tablet. The object of this game was to find as many berries (which were hidden among plants) as possible. Each participant could navigate the environment at will and click on individual berries to pick them up. After playing the game, each volunteer was asked to give a tissue sample for DNA testing.

Some volunteers took a perimeter-first approach, the team reports — these were the “assessors” — while others dove right into the thick of it — these are the “locomotors”. Next, the team looked at the differences in the human equivalent of the PRKG1 — a nucleotide polymorphism genotype called rs13499 — among these participants, and compare them with those seen in fruit flies.

Prior research has shown that one variant of the PRKG1 gene pushes flies towards the “assessor” pattern of behavior, while another makes them “locomotors”. Upon entering an area, assessors are more likely to tour its perimeter first, then move inward. Locomotors, in contrast, make a beeline for the first fruits they see.

If you’re thinking ‘hey, those behaviors seem pretty similar,’ you’re spot on. The team reports finding the same gene variants responsible for instigating locomotor or assessor behavior in fruit flies in their college participants, having the same effect in both species. They further note that the search paths taken by the human volunteers and the sitter and rover fruit flies were nearly identical.

The findings suggest that this gene-induced preference in foraging patterns likely holds for other species as well. The team adds that their findings also suggest the patterns of behavior we employ when pursuing our goals can also be connected with these two gene variants.

The paper “Self-regulation and the foraging gene (PRKG1) in humans” has been published in the journal PNAS.

share Share

China Resurrected an Abandoned Soviet 'Sea Monster' That's Part Airplane, Part Hovercraft

The Soviet Union's wildest aircraft just got a second life in China.

This Shark Expert Has Spent Decades Studying Attacks and Says We’ve Been Afraid for the Wrong Reasons

The cold truth about shark attacks and why you’re safer than you think.

A Rocket Carried Cannabis Seeds and 166 Human Remains into Space But Their Capsule Never Made It Back

The spacecraft crashed into the Pacific Ocean after a parachute failure, ending a bold experiment in space biology and memorial spaceflight.

Ancient ‘Zombie’ Fungus Trapped in Amber Shows Mind Control Began in the Age of the Dinosaurs

The zombie fungus from the age of the dinosaurs.

Your browser lets websites track you even without cookies

Most users don't even know this type of surveillance exists.

What's Seasonal Body Image Dissatisfaction and How Not to Fall into Its Trap

This season doesn’t have to be about comparison or self-criticism.

Why a 20-Minute Nap Could Be Key to Unlocking 'Eureka!' Moments Like Salvador Dalí

A 20-minute nap can boost your chances of a creative breakthrough, according to new research.

The world's oldest boomerang is even older than we thought, but it's not Australian

The story of the boomerang goes back in time even more.

Swarms of tiny robots could go up your nose, melt the mucus and clean your sinuses

The "search-and-destroy” microrobot system can chemically shred the resident bacterial biofilm.

What if Every Roadkill Had a Memorial?

Road ecology, the scientific study of how road networks impact ecosystems, presents a perfect opportunity for community science projects.