homehome Home chatchat Notifications


New polymer coating technique leads to first-ever completely plastic solar cell and makes way for even thinner electronics

One of the cutting edge technologies currently used today in manufacturing allows for printing materials directly onto a surface to create electrically functioning devices which are very thin and flexible. The best example of such an application are organic light-emitting diodes (OLEDs), widely used as displays for most new generation smartphones commercially available now. The […]

Tibi Puiu
April 20, 2012 @ 10:51 am

share Share

One of the cutting edge technologies currently used today in manufacturing allows for printing materials directly onto a surface to create electrically functioning devices which are very thin and flexible. The best example of such an application are organic light-emitting diodes (OLEDs), widely used as displays for most new generation smartphones commercially available now. The process however is very tedious, and the resulting devices become vulnerable to outside chemical phenomena, thus the need for an extra isolating casing, which makes the process expensive and the resulting device thicker.

Scientists at Georgia Tech may have finally devised a work-around this issue after they introduced a printed electronics atypical conductor with a low-work function by applying thin layer of polymer coating on the conductor’s surface. This makes it safe for use in ambient conditions, as well as efficient.

A team of researchers led by Georgia Tech's Bernard Kippelen has developed the first completely plastic solar cell, as seen captioned above exposed to humidity and oxygen. (Credit: Virginie Drujon-Kippelen)

A team of researchers led by Georgia Tech's Bernard Kippelen has developed the first completely plastic solar cell, as seen captioned above exposed to humidity and oxygen. (Credit: Virginie Drujon-Kippelen)

Typically, printed electronics, an industry set to grow by tens of billions of dollars over the next 10 years, create light or energy ultimately needed to display information on a screen by injecting or collecting electrons. The technology used today employs conductors like calcium, magnesium or lithium, which are highly chemically reactive materials. When exposed to oxygen or humidity, these metals oxidize and cease to function, so for the printed electronics to stably work they must be covered with a rigid, thick barrier such as glass or expensive encapsulation layers.

Scientists have sought to replace these materials with ones that can work exposed to ambient conditions, however the ones currently in use have been deemed the best options because of their low-work function, the prime prerequisite for workable printed electronics. The work function is the minimum energy needed to remove an electron from a solid to a point immediately outside the solid surface.

Here’s where the Georgia Tech researchers reached their potentially industry shaping breakthrough. The scientists managed to reduce the work function of a conductor by applying a very thin layer of a polymer, approximately one to 10 nanometers thick, to its surface to create a strong surface dipole. This interaction dramatically lowers the work function of conductors, which function without any issues exposed to air, but which couldn’t have been used in printable electronics until now. Best of all, the technique is universal and totally inexpensive, making use of polymers already commercially available.

“These polymers are inexpensive, environmentally friendly and compatible with existent roll-to-roll mass production techniques,” said Bernard Kippelen, director of Georgia Tech’s Center for Organic Photonics and Electronics (COPE). “Replacing the reactive metals with stable conductors, including conducting polymers, completely changes the requirements of how electronics are manufactured and protected. Their use can pave the way for lower cost and more flexible devices.”

To demonstrate their research’s findings, the Georgia Tech scientists built the first-ever, completely plastic solar cell and also evaluated the polymers’ performance in organic thin-film transistors and OLEDs, presented in their paper recently published in the journal Science.

“The polymer modifier reduces the work function in a wide range of conductors, including silver, gold and aluminum,” noted Seth Marder, associate director of COPE and professor in the School of Chemistry and Biochemistry. “The process is also effective in transparent metal-oxides and graphene.”

What this means is that soon enough, TVs as thin as a sheet of paper or more reliable solar cells might become commercially available at an affordable cost.

source

share Share

Evolution just keeps creating the same deep-ocean mutation

Creatures at the bottom of the ocean evolve the same mutation — and carry the scars of human pollution

Scientists Found a 380-Million-Year-Old Trick in Velvet Worm Slime That Could Lead To Recyclable Bioplastic

Velvet worm slime could offer a solution to our plastic waste problem.

Beetles Conquered Earth by Evolving a Tiny Chemical Factory

There are around 66,000 species of rove beetles and one researcher proposes it's because of one special gland.

These researchers counted the trees in China using lasers

The answer is 142 billion. Plus or minus a few, of course.

New Diagnostic Breakthrough Identifies Bacteria With Almost 100% Precision in Hours, Not Days

A new method identifies deadly pathogens with nearly perfect accuracy in just three hours.

This Tamagotchi Vape Dies If You Don’t Keep Puffing

Yes. You read that correctly. The Stupid Hackathon is an event like no other.

Wild Chimps Build Flexible Tools with Impressive Engineering Skills

Chimpanzees select and engineer tools with surprising mechanical precision to extract termites.

Archaeologists in Egypt discovered a 3,600-Year-Old pharaoh. But we have no idea who he is

An ancient royal tomb deep beneath the Egyptian desert reveals more questions than answers.

Researchers create a new type of "time crystal" inside a diamond

“It’s an entirely new phase of matter.”

Strong Arguments Matter More Than Grammar in English Essays as a Second Language

Grammar takes a backseat to argumentation, a new study from Japan suggests.