homehome Home chatchat Notifications


Asteroid that killed the dinosaurs hit at "deadliest possible" angle

During an asteroid impact, angles matter.

Alexandru Micu
May 27, 2020 @ 7:34 pm

share Share

New simulations from Imperial College London reveals that the gigantic lizards of old had the worst possible luck when the asteroid hit.

Image credits Ruben / Flickr.

The team’s work shows that the asteroid hit our planet at an angle of around 60 degrees, an incidence angle that caused the largest possible quantity of climate-altering gases to be released into the atmosphere. The impact vaporized billions of tons of sulfur, the team estimates, which blocked incoming sunlight and effectively plunged the Earth into a nuclear winter that killed 75% of life on the planet.

Hard-hitter

“Our simulations provide compelling evidence that the asteroid struck at a steep angle, perhaps 60 degrees above the horizon, and approached its target from the north-east,” says Professor Gareth Collins, of Imperial’s Department of Earth Science and Engineering, lead author of the paper describing the findings.

“We know that this was among the worst-case scenarios for the lethality on impact, because it put more hazardous debris into the upper atmosphere and scattered it everywhere — the very thing that led to a nuclear winter.”

The team used 3D impact simulations and geophysical data recovered from the site of the impact, now known as Chicxulub, to piece together the 66 million-year-old event.

They looked at the subsurface structure and shape of the impact crater and then simulated impact scenarios to see what combination of angle and direction would create a site that matched with Chicxulub. By using rock cores drilled from the crater, they could gauge the forces generated by the asteroid impact, helping them better control the simulation scenarios.

Another key piece of information was obtained by comparing the geometry of the crater to subsurface structures some 30 km beneath the crater. The relationship between the two — both created by the impact — helped the team estimate the direction of the impact and the incoming angle. These two structures were aligned in a southwest-northeast direction, the authors found.

The location Chicxulub.
Image credits Demetia / Flickr.

Simulated impacts at an angle of 60 degrees reproduced all of these observations almost exactly, they add.

That the upper geological layers around the Chicxulub crater (in present-day Mexico) contain a large amount of porous carbonate rocks, evaporite rocks, and are rich in water. Under the extreme conditions created by an asteroid impact, such rocks would have decomposed to release immense quantities of carbon dioxide, sulphur compounds, and water vapor into the atmosphere.

Sulphur, in particular, has a very strong and quick-acting cooling effect on climate (that’s why large volcanic eruptions can create cold stretches of time). Sulphur aerosols block incoming sunlight, which not only reduces the amount of heat incoming to the surface but also interferes with photosynthesis. The combination of climate upheaval and lack of food then leads to massive extinction events.

The incoming angle of 60 degrees was the worst possible scenario seen in the simulations, as it maximized the transfer of energy from this impact into adjacent rocks — in other words, it was the perfect angle to throw as much of them into the atmosphere as possible.

“Large craters like Chicxulub are formed in a matter of minutes, and involve a spectacular rebound of rock beneath the crater,” says co-author Dr. Thomas Davison, also of Imperial’s Department of Earth Science and Engineering. “Our findings could help advance our understanding of how this rebound can be used to diagnose details of the impacting asteroid.”

The team hopes that their findings can help us better understand why the impact proved so deadly and that they can help us better piece together the characteristics of past impact events and the asteroids responsible for them just by looking at the craters they formed.

The paper “A steeply-inclined trajectory for the Chicxulub impact” has been published in the journal Nature Communications.

share Share

AI-designed autonomous underwater glider looks like a paper airplane and swims like a seal

An MIT-designed system lets AI evolve new shapes for ocean-exploring robots.

Bees are facing a massive survival challenge. Could AI help them?

Our tiny friends are in trouble and it's because of us.

NASA finally figures out what's up with those "Mars spiders"

They're not actual spiders, of course, but rather strange geological features.

Cycling Is Four Times More Efficient Than Walking. A Biomechanics Expert Explains Why

The answer lies in the elegant biomechanics of how our bodies interact with this wonderfully simple machine.

We’re Starting to Sound Like ChatGPT — And We Don’t Even Realize It

Are chatbots changing our vocabulary? There's increasing evidence this is the case.

NASA’s Parker Solar Probe Just Flew Closer to the Sun Than Ever Before and the Footage is Breathtaking

Closest-ever solar images offer new insights into Earth-threatening space weather.

Scientists Just Showed How Alien Life Could Emerge in Titan's Methane Lakes

What if the ingredients of life could assemble on a methane world?

Can Dogs Really Smell Parkinson’s? These Two Good Boys Say Yes

Our best friend is even more awesome than we thought.

Scientists 3D Printed Microscopic Elephants and Barcodes Inside Cells for the First Time

What happens when you 3D-print an elephant and a microlaser inside a living cell?

AI-Powered Surgical Robot Performed a Full Operation With Zero Help From Humans

An AI robot performed gallbladder surgery without human help, and it worked every time.