homehome Home chatchat Notifications


Computer simulation predicts new exotic particle composed of two baryons

This would make it only the second such particle besides heavy hydrogen.

Tibi Puiu
May 29, 2018 @ 6:03 pm

share Share

Artist impression of the di-Omega particle. Credit: Keiko Murano

Artist impression of the di-Omega particle. Credit: Keiko Murano

Japanese researchers have used one of the world’s most powerful supercomputers to predict the existence of a strange new type of particle. The proposed particle is composed of two baryons, rather than a single baryon like almost all the other particles in the world.

Baryons are composite particles made of three quarks, as opposed to mesons, which are composite particles made of one quark and one antiquark. Both protons and neutrons, as well as other particles, are baryons.

A quark is a subatomic particle — one of two currently recognized groups of fundamental particles —  that represent the smallest known unit of matter. Twelve fundamental particles – six quarks and six leptons (the other type) – are the basic building blocks for everything in the universe. Both types of particles are distinguished in terms of flavors or colors, as they’re sometimes called. For quarks, there are six types of colors: up, down, top, bottom, strange, and charm.

Most particles are made of just one baryon, except an outlier called deuteron, or heavy hydrogen. Such particles are called dibaryon particles, and now researchers at RIKEN’s Advanced Institute for Computational Science in Japan have predicted the existence of a second one.

It took them three years of crunching numbers, working with an insanely fast computer capable of performing 10 quadrillion operations per second, to come to a result — that’s how computational intensive this kind of search can be. Running simulations based on quantum chromodynamics (QCD), the theory that describes quark interactions, the team eventually found a new tentative particle called di-Omega.

The new particle ought to be composed out of two “Omega baryons” that contain three strange quarks each.

“We were very lucky to have been able to use the K computer to perform the calculations. It allowed fast calculations with a huge number of variables. Still, it took almost three years for us to reach our conclusion on the di-Omega,” said Shinya Gongyo from the RIKEN Nishina Center.

In the future, it remains to be seen if di-Omega is really a thing of reality. The researchers have already proposed a series of experiments with heavy ion collisions in Europe and Japan for this purpose.

“We believe that these special particles could be generated by the experiments using heavy ion collisions that are planned in Europe and in Japan, and we look forward to working with colleagues there to experimentally discover the first dibaryon system outside of deuteron. This work could give us hints for understanding the interaction among strange baryons (called hyperons) and to understand how, under extreme conditions like those found in neutron stars, normal matter can transition to what is called hyperonic matter—made up of protons, neutrons, and strange-quark particles called hyperons, and eventually to quark matter composed of up, down and strange quarks,” said Tetsuo Hatsuda from RIKEN iTHEMS.

Scientific reference: Shinya Gongyo et al. Most Strange Dibaryon from Lattice QCD, Physical Review Letters (2018). DOI: 10.1103/PhysRevLett.120.212001.

 

share Share

Huge Study Links Ayahuasca to Mental Health Benefits—But It’s Not for Everyone

Naturalistic use of this Amazonian brew shows potential mental health benefits, but with risks.

Women Didn’t Live Longer Than Men in Medieval Times. Here's Why

Bones tell the story of gender and survival in Medieval London.

This hidden mineral is crumbling thousands of home foundations across New England. “It’s like your house was diagnosed with cancer”

Pyrrhotite causes cracks in concrete. But research on how widespread the issue might be has only scratched the surface.

Roman-Era Britons Had Scandinavian DNA Long Before Viking Raids

Centuries before the Vikings, Scandinavian roots intertwined with Britain's ancient history.

Loneliness makes you more prone to disease. Interacting with friends and family can help

Social isolation and loneliness are more than personal struggles—they're global public health crises.

Why Winter Smells So Fresh: The Science Behind the Seasonal Aroma

Ever noticed how winter air smells so uniquely crisp and fresh? It’s not just your imagination.

Scientists Achieve Quantum Teleportation Using Existing Internet Cables

Researchers demonstrate quantum teleportation over internet traffic, paving the way for secure applications.

9 in 10 new cars sold in Norway in 2024 were electric

Norway’s bold policies and long-term vision have turned it into a global leader in electric vehicle adoption.

This Radar System Can Detect Hidden Moisture in Your Walls

Mold is one of the most significant challenges for homeowners, and once it takes hold, it can be incredibly difficult to eliminate. Preventing mold is the best approach, and the cornerstone of mold prevention is managing humidity. Now, researchers from Oak Ridge National Laboratory (ORNL) have developed a method using microwave radar to monitor the […]

The surprising link between your pupils and how your brain stores memories at night

In the stillness of sleep, tiny pupil shifts in mice uncover a remarkable secret: the brain’s delicate act of preserving memories while forging new ones.