homehome Home chatchat Notifications


Desert beetle and cactus inspire material that collects water from the air

One group combined water collecting traits from the awesome Namib desert beetle, cactus and pitcher plant to devise a material that seemingly makes water out of thin air.

Tibi Puiu
February 29, 2016 @ 6:13 pm

share Share

In the scorching desert, there’s nothing more valuable than water. Since evolution fosters those who survive and carry on their genes, there are numerous animals and plants that have adapted even to the driest places. It makes sense for us to exploit all these millions of years worth of work on nature’s part. One group combined water-collecting traits from the awesome Namib desert beetle with cactus and pitcher plant to devise a material that seemingly makes water out of thin air.

water droplets

Image: waterdroplets growing faster on the apex of the bumps compared to a flat region with the same height. Credit: Aizenberg Lab/Harvard SEAS

Previously, ZME Science reported how the Namib desert beetle’s unique shell structure inspired researchers to make an aerospace material that doesn’t build frost. Now, its  bumpy shell along with other traits like the spines of cactuses and slippery surfaces of pitcher plants have been incorporated into a material with unprecedented properties.

Bumpy surface (left) collected a lot more water at the bottom than an unaltered surface (right). Credit: Aizenberg Lab/Harvard SEAS

The bumpy surface (left) collected a lot more water at the bottom than the unaltered surface (right). Credit: Aizenberg Lab/Harvard SEAS

The material’s surface has asymmetric 0.9-millimeter-tall mounds which promote the condensation of water vapor into droplets. These roll of a side-ramp modeled after the water droplet-guiding concavity of cactus spines. Finally, nano-pores akin to those found in the  friction-free coatings of pitcher plants help the surface be more slippery.

How asymmetric bumps can be used to guide droplets to a desired location. Credit: Aizenberg Lab/Harvard SEAS

How asymmetric bumps can be used to guide droplets to a desired location. Credit: Aizenberg Lab/Harvard SEAS

The tech developed at Harvard University is very efficient at not only collecting condensed droplets, but also moving them away. In applications with heavy use of heat exchange, this could prove particularly useful.

“Forming droplets that can shed off of the surface is very important because it takes heat away immediately. The amount of water collected will be proportional to the heat that’s taken away from the surface,” says Tak-Sing Wong, a materials scientist at Pennsylvania State University who is designing his own bio-inspired slippery-surfaces, but was not part of the Harvard study.

The same bio-inspired coating could make refrigerators 30% more energy efficient.

Findings appeared in the journal Nature.

share Share

How Hot is the Moon? A New NASA Mission is About to Find Out

Understanding how heat moves through the lunar regolith can help scientists understand how the Moon's interior formed.

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.